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Abstract

As our society moves swiftly towards an era where technology seamlessly integrates into

our daily lives, our homes and cities are becoming increasingly sensorised. This change

is fueled by advancements in artificial intelligence that facilitate harnessing the potential

of smart environments. The main focus of this thesis is to investigate how Graph Neural

Networks (GNNs) can be effectively applied to these environments, with a focus on those

where humans and robots share the space. In these scenarios, integrating and exploiting

data from multiple sources and analysing interactions between individuals, objects, sensors

and robots is paramount. As the literature shows, GNNs have advantageous properties to

process this kind of data when compared to more established deep learning approaches.

This thesis presents a range of methods and applications in sensorised environments

that leverage GNNs’ properties. The main contributions span applications in three main

fields: human-aware robot navigation, human pose estimation, and the generation of traffic

images. For human-aware navigation, this thesis proposes a model capable of estimating

the level of discomfort caused by a robot’s presence among people and objects, considering

not only the entities themselves but also the interactions happening. This model is later

improved to yield discomfort maps that can be used as cost maps for motion planning.

In the domain of human pose estimation, two different solutions are presented: a model

capable of estimating the position and orientation of the people in the environment, and

a multi-camera and multi-person 3D human full pose estimator. This last model, which

does not require a labelled dataset for training, can be used for tracking people and feed

their poses into the aforementioned cost map generator, as seen in the experimentation of

this thesis. These works exhibit superior results in terms of precision, accuracy, and time
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efficiency when compared to similar state-of-the-art works.

Finally, in the field of image generation, the thesis explores an application within the

context of smart cities: generating realistic traffic images conditioned with graphs. This

work leverages the strengths of GNNs when working with semantic data. The model can

generate realistic images based on the properties of the items expected in them –namely

their position, size and colour– and global properties such as the time of day.

GNNs can be time-inefficient due to the added complexity of dealing with heteroge-

neously structured data. Consequently, the success of the applications presented in this

thesis is the result of the effective integration of this networks, often in conjunction with

other well-known approaches. One notable example is the fusion of convolutional networks

with GNNs, which in this thesis leads to more efficient image generation when compared to

pure GNN architectures. These methods constitute the central contribution of this thesis,

as they allow GNNs to fully exploit their potential while mitigating inefficiencies.

Keywords: Graph Neural Networks, Sensorised Environments, Human-Aware Naviga-

tion, Multi-Camera Pose Estimation, Robotics, Image Generation.
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Chapter 1

Introduction

In our rapidly evolving world, smart environments are becoming ubiquitous. These environ-

ments are physical domains or ecosystems that dynamically interact with their inhabitants,

these environments collate and analyse data, autonomously adapting to alterations and

occurrences. They leverage technologies such as the Internet of Things (IoT) and edge

computing [112], supported by advancements in telecommunications (fifth-generation 5G

networks) and sensor technologies, as well as Artificial Intelligence (AI) and data analytics

to optimise energy efficiency, enhance comfort, improve safety, and deliver an upgraded user

experience. Smart environments can be found in various contexts, including smart homes,

smart cities, smart buildings, and smart transportation systems [6].

Inherently, smart environments must be sensorised. For the purposes of this thesis, a
√

sensorised environment can be defined as a setting wherein a multitude of sensors and

often actuators collaborate to provide an agent with comprehensive information about its

surroundings. For instance, a room equipped with multiple cameras capturing images from

diverse angles and transmitting them to a robot via wireless connection can be regarded as a

sensorised environment. It can also refer to a city equipped with CCTV cameras, air quality

sensors, illumination sensors, and other monitoring devices. The gathered information must

be fused and processed to extract key features that will be used for further actions. In this

task, it would be interesting to use algorithms capable of learning and extracting the most

useful features from the data. This thesis explores the design and application of learning
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models in these sensorised environments.

Regarding indoor sensorised environments, they are expected to incorporate mobile and

assistive robots, which can assist with a multitude of crucial functions, such as companion-

ship [64], aiding elderly individuals with chores, or supporting people with disabilities [33].

Navigation constitutes one of the most fundamental skills required for robots to be func-

tional, as they need to manoeuvre within their environment to carry out basic tasks. In

order to be seamlessly integrated into our daily lives, robots should adhere to social con-

ventions, thereby mitigating any potential disruption to humans.

Over the past few decades, there has been significant research in the areas of proxemics

and interpersonal distance acceptance for humans, leading to the emergence of the concept

of
√

Human-Aware Navigation (HAN). As outlined by Kruse et al. [99], three primary

requirements for socially acceptable robot navigation are comfort, naturalness, and socia-

bility. These concepts are further explored in Chapter 4. Historically, literature on robot

navigation primarily focused on collision avoidance with objects, humans, and walls. How-

ever, HAN seeks to go a step further by taking into consideration the social interactions

(human-human and human-robot) as well as respecting the interpersonal space.

Pioneering work taking into account human awareness in robot navigation used hard-

coded features to create the path followed by the robot in the presence of humans [135],

[91]. The main drawback of this technique is that social behaviour or human behaviour

is stochastic. Creating a hand-crafted program for a robot to predict human actions is

challenging, as there is, arguably, too many variables to handle manually [178]. Instead,

learning through demonstration proves more effective. Many contemporary approaches,

such as [37], [30], [137], or [139], employ machine learning models to address this issue,

allowing an agent to learn from experiences facilitated by a human. Consequently, Chapters

4 and 5 in this thesis delineate the development of learning algorithms tailored for HAN.

Specifically, these chapters delve into the creation of models for estimating the discomfort

induced by a robot in a given space and generating corresponding cost maps based on these

discomfort scores for robot navigation.

In the realm of robot navigation, environmental awareness is crucial for the development
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of robots that can learn from their surroundings and adapt their behaviour in response to

changes. Part of the research conducted in this thesis aimed to develop algorithms and

applications for robots operating in sensorised environments where they must coexist with

humans. Thus, RGB cameras, which are relatively inexpensive sensors, can be employed

to detect humans in a sensorised environment. Numerous studies have investigated the

detection of 2D human poses using RGB camera sensors [26, 192]. However, it is required

to estimate the position of people within a 3D space, rather than merely in the image plane

of the cameras, in order to provide meaningful information to the robot.
√

3D Human

Pose Estimation (HPE) can prove to be a complex task, particularly when using a

multi-camera setup in which information from various cameras must be fused to determine

final 3D poses (additional information about this problem can be found in Chapter 6).

Traditional approaches address the issue by employing geometric and appearance cues, as

well as epipolar geometry [46, 18]. Nonetheless, these approaches, which rely on analytic

algorithms, often struggle to handle occluded body parts. For instance, a 3D position cannot

be obtained through triangulation if it is not detected by at least two cameras. In such cases,

a machine learning algorithm could potentially learn to utilise the available information to

“hallucinate” or infer the missing body parts when detections from multiple cameras are

absent. This approach would allow the algorithm to fill in the gaps and estimate 3D poses

more accurately. Two learning-based approaches for human orientation estimation and 3D

HPE are presented in Chapter 6.

This thesis also explores outdoor sensorised environments, such as those found in smart

cities. Traffic congestion, especially prevalent in major global cities, is a persistent issue ex-

acerbated by the growing number of vehicles. In this setting, effective traffic management

is critical to reduce travel delays, road accidents, and environmental pollution.
√

Intelli-

gent Transportation Systems (ITS) integrate sensing and communication technologies

with automatic control techniques, with the aim of augmenting the safety and efficiency of

transportation infrastructure.

Traffic junctions are pivotal points in traffic management as they function as shared

physical spaces traversed by numerous vehicles. Effective traffic light control at these in-

tersections can lead to improved traffic flow. Traditional traffic lights, often based on

handcrafted algorithms, prove inefficient as they struggle to adjust dynamically to variable
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traffic patterns. Advancements in machine learning offer a solution through the use of algo-

rithms that deduce optimal policies from raw sensory data such as traffic images. However,

this solution requires the collection of a substantial amount of data for model training.

Chapter 7 addresses this issue by offering a tool for generating artificial traffic images

using machine learning. This tool facilitates the generation of large datasets for training

not only traffic control systems, but also other traffic applications based on raw images,

such as traffic surveillance and traffic prediction among others.

Figure 1.1: Diagram outlining the scope of deep
learning within the broad frame of artificial in-
telligence.

In the previously outlined projects,

purely analytic solutions demonstrate limi-

tations, particularly with increased problem

complexity or missing information. Machine

learning and deep learning algorithms have

been proposed as more adept at addressing

these limitations. Before proceeding, it is

essential to briefly define some fundamental

terms, which will enable the reader to better

comprehend the scope of the work and the

positioning of the deep learning paradigm

within the broader context of AI.

Firstly, how is the term Artificial Intelligence (AI) understood nowadays? From the

creation of the first computer, humans have regarded it as an intelligent agent, capable

of performing tasks that were previously unattainable. Over time, these tasks have come

to be known as computer programs. However, it soon became apparent that certain tasks,

which humans can effortlessly execute, such as visual recognition, speech understanding, and

reasoning, are nearly impossible for a programmer to code into a machine. This realisation

led to a complete redefinition of artificial intelligence [172]. It is now better understood as

the “simulation of human intelligence processes by machines, particularly computers” [155].

This definition is one of many, as the term AI encompasses a vast umbrella of fields and

purposes. In this line, contemporary AI research aims to emulate, and in some instances,

surpass human capabilities in various tasks.
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Machine Learning (ML) is a subset of AI that enables machines to learn from observations

and data without explicit programming. Unlike conventional AI models, ML algorithms

can learn autonomously, training themselves using samples of inputs and expected outputs.
√

Deep Learning (DL) is a subset of ML that utilises deeper networks with a larger number

of parameters. As a result, more data is needed to train these models, but they extract

higher-level features from the input, yielding improved results and generalisations. This

allows for the creation of end-to-end applications directly from raw data, eliminating the

need for handcrafted features for the inputs [59]. Consequently, the majority of models

developed in this thesis fall within the scope of Deep Learning. Figure 1.1 illustrates a

diagram that clarifies the positioning of Deep Learning within the framework of AI.

Figure 1.2: Keywords in ICLR articles 2023. Graph Neural Network is the 4th more mentioned keyword.1.

1Source: https://github.com/EdisonLeeeee/ICLR2023-OpenReviewData
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Within the diverse range of deep learning paradigms, the work presented in this thesis

primarily focuses on the study of a relatively novel family of techniques known as Graph

Neural Networks (GNNs) in conjunction with other state-of-the-art DL models (refer to

Chapter 2 for more information about the fundamentals of DL). GNNs offer several ad-

vantages compared to traditional Euclidean structured methods, which will be discussed in

Chapter 3. Although relatively new, GNNs demonstrate strong potential and have emerged

as one of the hottest research topics in machine learning. As evidence of their popularity,

Figure 1.2 depicts the most frequently occurring keywords in the ICLR 2023 conference,

with Graph Neural Networks ranking among the most prominent.

To summarise, this thesis delves into enhancing deep learning applications leveraging

GNNs across three key research domains in sensorised environments: human-aware navi-

gation with robots, human pose estimation and image generation for data augmentation.

The motivation for the choosing of these areas comes from their utility in our society and

its numerous applications as discussed above. The bulk of the work concentrates on indoor

sensorised environments for social and human-aware navigation with a robot and the fusion

of camera sensors for detecting people’s poses in the scene (the two first areas of reasearch).

Chapter 7 explores the design of a model using an outdoor surveillance camera for image

generation, employing a combination of GNNs and image processing DL models. Although

this last project is not as closely related as the two previous areas of research, it utilizes

GNNs combined with CNNs for efficient image generation, which is one of the key con-

tributions of the previous projects. Furthermore, akin to the previous research areas, this

last one operates within sensor-rich environments. The fundamental difference lies in the

outdoor spatial context in this instance.

The thesis exclusively employs GNNs or their fusion with cutting-edge ANNs across all

developed learning models to push the boundaries of the state-of-the-art within their re-

spective application domains. This commitment is validated through meticulously designed

experiments aimed at testing and comparing the performance of these innovative models

against the prevailing benchmarks. Consequently, the thesis not only seeks to enhance spe-

cific applications in the aforementioned research domains but also aims to pioneer novel

techniques for the more efficient utilization of GNNs. The ultimate objective lies in demon-

strating the substantial advantages GNNs offer for certain applications within sensor-rich
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environments, provided they are effectively implemented. Sensorised environments in gen-

eral, and specifically those presented in this thesis, are physical environments where higher

level data and raw sensory inputs meet. Throughout the contributions of the thesis, evi-

dence is provided supporting that GNNs have potential to exploit data at different levels

of abstraction. In addition to dealing with heterogeneously abstract data, GNNs are or-

der and size equivariant, which are beneficial for sensorised environments as, for instance,

the number of cars or pedestrians vary. Further elaboration on the advantages of GNNs

in sensor-rich environments can be found in Section 3.3 of Chapter 3. This advantages

motivates their use and exploration in the applications of this thesis.

The research questions this thesis seeks to address are outlined in the following section

1.1. Throughout the research process, significant contributions have emerged, as detailed

in section 1.2.

1.1 Research Questions

Having established the prevalent role of sensorised environments in contemporary society

and that Graph Neural Networks could serve as powerful tools when applied to this do-

main, the experiments and applications developed throughout this thesis seek to support

this statement. To rigorously examine the application of graph-based learning models in

sensorised environments, this thesis sets out to address two primary research questions:

Q1. What are the benefits of Graph Neural Networks in comparison to classical

approaches in this field?

This global research question serves as the focal point of the thesis. To address it, various

applications of GNNs in sensorised environments have been proposed, specifically focusing

on perception, prediction, and planning in the robotics field, as well as the generation of

realistic images from graphs. These particular applications have been selected due to their

anticipated substantial impact on society, especially considering the escalating prevalence

of sensorised environments. The intent is to delve into areas where GNNs can play a pivotal

role, addressing the challenges and opportunities posed by these environments.

The experiments conducted for these applications demonstrate that GNNs capitalise on
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their inductive bias for graph-structured data and relational information, resulting in supe-

rior performance compared to state-of-the-art deep learning approaches. This superiority

is observed, for example, in the generation of cost maps accounting for interactions among

people, objects, and robots, (see Chapters 4 and 5) or in the fusion of multi-camera sen-

sor data for estimating 3D human poses (see Chapter 6). Additionally, the integration of

semantic data into graph features offers a significant advantage, as this information proves

valuable in conditioning the generation of images, as demonstrated in Chapter 7.

Throughout this thesis, it will be demonstrated that the proposed GNN-based models

effectively address some of the limitations of conventional deep learning approaches for

specific applications.

Q2. How can Graph Neural Networks be efficiently applied to sensorised environ-

ments and robots, where working with structured and non-structured data is

crucial? Can they be improved in any way for the specific applications of this

thesis?

One of the aims of this thesis is to study whether GNNs can outperform classical ap-

proaches in certain applications in sensorised environments. These networks are powerful in

tasks such as fusing information from multiple sources, effectively exploiting data relation-

ships, and capturing semantic data from graphs. However, GNNs can be computationally

inefficient due to the added complexity of dealing with heterogeneously structured data.

Consequently, the success of the applications presented in this thesis is the result of the ef-

fective integration of these networks, often in conjunction with other well-known approaches

in DL. One notable example is the fusion of convolutional networks with GNNs, which in

this thesis leads to more efficient image generation when compared to pure GNN architec-

tures. These methods constitute the central contribution of this thesis, as they allow GNNs

to fully exploit their potential while mitigating inefficiencies.

1.2 Contributions of this Thesis

This research critically investigates the integration of GNNs into applications within sen-

sorised environments. It involves a series of extensive experiments aimed at exploring this
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integration, yielding valuable insights across multiple domains. Specifically, these experi-

ments shed light on human-aware navigation with robots, the fusion of data from diverse

sensors for 3D human pose estimation, and the utilization of semantic data to enhance

realistic image generation.

The outcomes of these experiments provide a better understanding of Graph Neural

Networks and also introduce improvements never seen in these models until the present

time, which constitutes one of the most important scientific contributions of this thesis.

Furthermore, considering the escalating prevalence of sensorised environments in our

society, the models and applications derived from this research possess the potential for

substantial real-world impact in our daily lives.

Outlined below are the primary technological and scientific contributions of this thesis,

offering a more detailed perspective:

• A dataset for human-human and human-robot interactions in a simulated environ-

ment, SocNav2, which incorporates 3D images, entity velocities, and trajectories, un-

like its predecessor SocNav1. Additionally, a tool called SONATA has been developed

to facilitate dataset creation. SocNav2 was created using this tool, providing flexibil-

ity for designers. The dataset has been employed to train several models presented in

this work. (Chapter 5). These contributions have notably led to the publications [10]

and [11].

• A model, SNGNNv2, capable of predicting discomfort scores reflecting the extent to

which a robot disturbs people in a room. These scores can be utilised to evaluate the

performance of human-aware navigation algorithms, as the model has been trained

using data extracted from real humans labelling these scenarios. (Chapter 5). This

contribution has been documented in [10].

• Two distinct models, SNGNN-2D and SNGNN-2Dv2, developed to generate 2D cost

maps from static and dynamic data, respectively. These maps represent the disrup-

tion areas caused by a robot to humans in a room and can be applied to human-aware

navigation. Experiments with a real robot demonstrate the efficacy of these maps
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for navigation. (Chapters 4 and 5). SNGNN-2D has been documented in [146],

while SNGNN-2Dv2 is planned for forthcoming publication in the Journal of Ambi-

ent Intelligence and Humanized Computing under the title “Generation of Dynamic

Human-aware Navigation Maps using Graph Neural Networks”.

• A novel modification to the input graphs of a GNN tailored for specific applications,

facilitating seamless integration with Convolutional Neural Networks (CNNs) for im-

age generation. These innovative graphs incorporate a lattice of nodes that can be

effortlessly transformed into an image to be processed by the CNN. (Chapters 4, 5

and 7). The impact of this contribution is underscored by its inclusion in publications

[146] and [147].

• A robust model capable of estimating human orientation and torso position in a plane,

by efficaciously fusing data from multiple RGB camera sensors. The model boasts the

ability to be trained with a hybrid dataset consisting of both simulated and real-world

data, thereby enhancing its generalisability and practical utility. (Chapter 6). This

contribution is published in [145].

• An advanced multi-camera, multi-person 3D full pose estimation model, which can

be trained with unlabeled data using self-supervised learning techniques. Through

empirical experiments conducted with a real robot, this model is demonstrated to

be scenario-agnostic, effectively working with cameras mounted on a mobile robot

and avoiding the need for scenario-specific training. (Chapter 6). This contribution,

submitted to the International Journal of Computer Vision, is currently under review

with the title“Multi-person 3D Pose Estimation from Unlabelled Data”.

• A unique combination of a GNN and an image generation model to produce realis-

tic images of traffic crossroads. The GNN plays an essential role in conditioning the

generated images with both metric and semantic data such as the coordinates of the

vehicles, their colour, and the time of day. This innovation provides a practical tool

for synthesising realistic traffic images, with significant potential utility in traffic man-

agement and transportation planning applications. (Chapter 7). This contribution is

documented in [147].
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1.3 Structure of this Thesis

The remainder of this thesis is organised into seven chapters with the following structure.

An introduction to the basic concepts and structures of deep learning is provided in Chap-

ter 2. This chapter helps to better understand the process followed for the development

of the applications in subsequent chapters. Particular emphasis is given to artificial neural

networks that incorporate inductive bias for working with imagery and examining prevail-

ing trends in image generation. If you are already familiar with the basics of deep

learning and deep neural networks, you can safely to skip this chapter. Chapter 3

focuses on the history, functioning, and principal variants of Graph Neural Networks, which

is the core paradigm studied in the present work. This chapter also outlines the benefits of

GNNs in comparison to traditional artificial neural networks for dealing with relations and

non-structured data.

The contributions of this thesis begin in Chapter 4, which outlines the design and creation

of a model for generating cost maps that can be used for human-aware navigation. The

maps are created from static data from the environment with the purpose of indicating

the areas of greater disruption to humans by the robot. Chapter 5 extends the work on

cost map generation by using dynamic data. For this, a new dataset with velocities and

trajectories of the entities in a room is created, and several important modifications to the

static model are made.

Chapter 6 describes the creation of two different models for human pose estimation from

RGB sensors. This task is linked to the work on cost map generation, as it can be used

to detect the position of people when generating the maps. The first model of this chapter

estimates only the orientation and the torso position of the person, while the second one

predicts full skeletons in 3D. Both models are suitable for multi-camera and multi-people

environments.

Chapter 7 explores an application of GNNs for traffic image generation. A GNN, along

with an image generation model, is employed to create realistic images of a traffic crossroad.

This application demonstrates the advantages of graph neural networks in exploiting not

only metric information but also semantic features.
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Chapter 8 concludes this thesis, deriving insights from the experimental studies carried

out in Chapters 4, 5, 6, and 7. The research questions and contributions delineated above

are revisited, culminating in a discourse on the implications of these outcomes and potential

future research trajectories arising from this thesis.
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Chapter 2

Basics of Deep Neural Networks

As stated in the contributions, Section 1.2, most of this thesis dissertation focus on the

study of Graph Neural Networks, often in combination with classic DL models. This chapter

introduces the basic concepts, mathematical notation, and terminology used in the following

chapters, as well as the most popular Deep Neural Networks (DNNs). The aim is to provide

a theoretical and contextual framework that assists the reader in understanding the rest of

the document.

Although this chapter introduces only the conventional Artificial Neural Networks (ANNs),

the following chapter will be dedicated exclusively to the fundamentals of Graph Neural

Networks and their main variations.

2.1 Mathematical Notation

To aid in maintaining a coherent and consistent notation throughout the document, this

section provides a concise collection of the mathematical symbols and conventions for further

reference. This notation follows the one in [59]:

Numbers and Arrays

s A scalar (integer or real)

v⃗ A vector
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M A matrix

TTT A tensor

In Identity matrix with n rows and n columns

Sets and Graphs

S A set

R The set of real numbers

G A graph

Indexing

vi Element i of vector v⃗, with indexing starting at 1

Mi,j Element i, j of matrix M

TTT i,j Element i, j of tensor TTT

j ∈ N (i) Indices j of nodes connected to node i

N n(i) nth-order neighbors of i, including i

Linear Algebra Operations

a = b a is equal to b

a := b The value of b is assigned to variable a

a⃗ ∥ b⃗ Concatenation of vector a⃗ with vector b⃗

MT Transpose of matrix M

TTT T Transpose of tensor TTT

A⊙B Element-wise (Hadamard) product of A and B

A×B Matrix multiplication of A and B

Calculus

dy

dx
Derivative of y with respect to x

∂y

∂x Partial derivative of y with respect to x

∇xy Gradient of y with respect to x⃗
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∇Xy Matrix derivatives of y with respect to X

∇XXXy Tensor containing derivatives of y with respect to XXX

Probability

P(x) Probability distribution of a discrete random variable x

P(x | y) Probability distribution of a discrete random variable x, given y

p(x) Probability distribution of a continuous random variable x

x ∼ P(x) Random variable x sampled from P(x)

Ep∼P(x)[f(x)] The expected value of f(x) given that x is sampled from P(x)

U(a, b) The uniform real distribution on the range [a, b]

N (µ, σ) The normal distribution with mean µ and standard deviation σ

Functions

f : A → B The function or operator f with domain A and range B

f ◦ g Composition of the functions f and g

f(x; θ) A function f of x parameterised by θ

logloglog x Natural logarithm of x

∥x∥p Lp norm of x

∥x∥ L2 norm of x

2.2 Basics of Machine Learning, the Multi-Layer Perceptron

This first section will guide the reader through the basic concept of DNNs using the Multi-

Layer Perceptron (MLP) as the explanation baseline. MLP’s simplicity makes it easier

to understand the structure and elementary processes within Artificial Neural Networks

(ANN) and the definitions here can be extrapolated to more complex DNNs. This section

does not intend to provide an exhaustive explanation of the training and optimisation of

processes but to introduce the key ideas that will help understand the rest of the thesis.

The
√

Multi-layer Perceptron (MLP) was one of the first ANNs to appear in the

machine learning community. It is an extension of the Perceptron developed by Rosenblatt

in 1958 [153]. This kind of network, in theory, can “learn” to approximate any kind of linear
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or non-linear functions. Thereupon, we will dip into the MLP structure to understand how

it computes its outputs.

Figure 2.1: A drawing of a biological neuron (left) and the basic unit of an MLP the Perceptron (right)1.

The building block of the MLP is the
√

Perceptron referred to as an artificial neuron.

It is inspired by biological neurons, sharing some similarities as depicted in Figure 2.1.

It aggregates information from different inputs (dendrites) and generates a single output

(axon) that is triggered using an activation function.

a = σ(
∑

i

wixi + b) (2.1)

Equation 2.1 describes how the Perceptron calculates its output. The values xi from the

different i inputs are aggregated by performing a weighted sum across all inputs multiplied

by some weights wi and adding a bias term b. Therefore, a single Perceptron can approxi-

mate linear functions. It is worth noting that the bias term allows the Perceptron to learn

functions that don’t necessarily have to pass through the origin. As the reader might have

noticed, this is the same equation as a logistic regression where the weights play the same

role as the coefficient in the regression.

Although the Perceptron by itself is a good approximator for simple linear functions, the

real power of the MLP comes from the connection in layers of many of these neurons forming

a network. Moreover, the result of Equation 2.1 is passed through a non-linear operation

σ(·), also called
√

activation function , that modules the intensity and range of the values

at the output, thereby enabling the MLP to approximate non-linear functions. Further

1Source: https://cs231n.github.io/neural-networks-1/
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Figure 2.2: Multi-Layer Perceptron scheme.

information on these activation functions and the most commonly employed variants can

be found in Section 2.2.1.

Figure 2.2 shows how several Perceptrons are connected to form the Multi-Layer Per-

ceptron. Each row of neurons is called a
√

layer and networks can have different numbers

of layers. All the outputs of the neurons of the previous layer are connected to the inputs

of each of the neurons of the second layer, which is why MLPs are also known as fully

connected networks. Conventionally, these layers are separated into three parts as shown

in Figure 2.2: the input layer, the hidden layers and the output layers. We see that an

ANN is nothing more than a parametrised composition of affine and non-linear functions

G(θ;x) = y where θi = {Wi, bi}.

Historically, if there is more than one hidden layer the ANN is considered a
√

Deep Neural

Network (DNN). According to the universal approximation theorem proved by Cybenko

[43], a neural network with only one hidden layer and sigmoid-like activation functions

can approximate any real function. Then why add more than one layer? The answer to

this question is not clear from a theoretical point of view since there aren’t convincingly

demonstrations of the possible explanations. However, experience tells us that deeper ANNs

lead to better results, generalising better over unseen input data [59].
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Figure 2.3: Relation between the number of layers and accuracy of a model trained to transcribe multi-
digit numbers from photographs of addresses by [59].

The MLP can learn how to approximate functions after a training process where numer-

ous pairs of inputs and expected outputs are presented to the network. The set of all these

pairs used for training the network is called
√

training dataset or training set. During the

training process, the weights (or parameters) of the network are updated to minimise the

error between the predicted output and the expected output. The most widely known and

used mechanism to perform this training process is called
√

stochastic gradient descent ,

explained in more detail in section 2.3.

Next, let us see how the MLP performs a forward pass using vectorised notation. The

input layer (most left-hand side in Figure 2.2) takes the data to be processed by the network.

We can express the input values of the network as a vector x⃗ = (x0, x1...xm)T . We can now

transform the equation of the computation of a single Perceptron (Equation 2.1) in its

vectorised version:

z
(l)
i = w⃗

(l)T
i x⃗ + b

(l)
i

a
(l)
i = σ(z

(l)
i )

(2.2)
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The subscript i refers to the neuron’s index in the layer and the superscript l to the

index of the layer. The weights vector w⃗ must have the same length as the input vector x⃗

(output of the previous layer) and the final activation value a is yielded by the activation

function σ(·). The equation of the computation for the whole layer can be written as follows

in the vectorised form:

z⃗(l) = W (l)x⃗ + b⃗(l)

a⃗(l) = σ(z⃗(l))
(2.3)

Where W is now a two-dimensional matrix with the number of rows equal to the number

of neurons in layer l and the number of rows equal to the number of neurons in layer l− 1,

and b⃗ is a vector of the same size as the neurons in the layer l. Finally, if we want to do a

forward pass through a dataset with m samples we can write Equation 2.4 as:

Z(l) = W (l)X + B(l)

A(l) = σ(Z(l))
(2.4)

In this case, B, Z and A are matrices of dimension (nl,m), W has dimensions (m,nl, nl−1)

and the input matrix X has dimensions (nl−1,m). Where nl−1 is the dimension of the input

and nl is the dimension of the output for that layer.

When these equations are translated into code run by a program, using the vectorised

version instead of loops makes it run much faster. The vector operations can be parallelised

taking advantage of the graphic card’s power.

2.2.1 Activation Functions

The activation function regulates when and with what intensity the neuron fires. These

functions are essential for allowing the network to approximate non-linearities. In the case

of not using a non-linear activation, the Multi-layer Perceptron would be nothing but a

succession of linear operations that results in a linear function approximator.

It is worth noting that the activation functions of the hidden layers and the one of
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Figure 2.4: Different plots of the most relevant activation functions for this thesis.

the output layer can be different. Depending on the requirements of the network and the

expected output, can be beneficial to use one function instead of another. This section goes

through the activation functions explaining their pros and cons and the criteria for using

them in the models in this thesis. Figure 2.4 shows the graph for each of the activation

functions listed below:

• The family of Sigmoid functions are also used in logistic regression. Their mean is

0.5 and they only return positive numbers since their outputs go in the range [0, 1].

They usually perform worse than the rest of the activation functions in this list as

activation for the hidden layers [132]. For this reason, in this thesis, they have only

been used as activation of the output layer in the cases of binary classification or

regression when the values are expected to be in the range [0, 1].

sigmoid(z) =
1

1 + e−z
(2.5)

• The Hyperbolic tangent is a shifted and stretched version of the sigmoid function
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where the output values are in the range [−1, 1], having a mean for the outputs in

zero. In most applications, it works better than the sigmoid function for the hidden

layers since convergence is faster if the average of the input of each layer is close to

zero, reducing the bias shift effect [106].

tanh(z) =
ez − e−z

ez + e−z
(2.6)

• The Rectified Linear Unit or ReLU [58] is one of the most popular activations for

DNNs. The derivative of the points of this function on the positive side is greater in

comparison with the sigmoid and the hyperbolic tangent making the network learn

faster in most cases. The simplicity of its derivative makes it computationally efficient

and it is a non-saturating activation function preventing gradient vanishing, which is

a problem when training the network as seen in Section 2.3.

ReLU(z) = maxmaxmax(0, z) (2.7)

• The Leaky Rectified Linear Unit or Leaky ReLU [116] is a type of activation

function based on a ReLU, but it has a small slope for negative values instead of a flat

slope. The slope coefficient is a hyperparameter that can be adjusted, with Equation

2.8 exemplifying a value of 0.1. This activation function does not suffer from a ReLU

problem known as “dying ReLUs”, where some neurons die out, meaning they keep

on throwing 0 as outputs with the advancement in training. It also has the advantage

of pushing mean unit activations closer to zero. From the insights gleaned throughout

the projects undertaken in this thesis, this activation function alongside the hyperbolic

tangent, usually delivers the best performance.

leakyReLU(z) = maxmaxmax(0.1z, z) (2.8)

• The Exponential Linear Unit (ELU) [40] is similar to the leaky ReLU. The differ-

ence is that the negative part is softened by a parameter α as you can see in Equation
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2.9. ELUs saturate to a negative value with smaller inputs and thereby decrease the

forward propagated variation and information.

ELU(z) =





z z ≥ 0

α(ez − 1) z < 0
(2.9)

It is worth noting that if we want the network output to be in the range of the real

numbers x ∈ R, it is possible to not use any activation function in the output layer or it

can also be called linear activation function.

2.3 How the Multi-Layer Perceptron Learns

The learning process of a DNN is formulated as an optimisation problem. It is an iterative

method where the parameters of the network are updated to better approximate the function

matching the input space to the output space of the dataset. To evaluate how good the

prediction of the network is in comparison to the expected value in the training dataset, a
√

loss function is used to provide a score for this approximation. The lower the score, the

better the prediction by the network. Therefore, the learning method aims to obtain the

parameter values that minimise the result of the loss function, or in other words, find the

global minimum of the loss function. In reality, in a multidimensional problem, it is almost

impossible to reach this global minimum and reaching a local minimum is a good enough

result for the neural network training. The optimisation process consists in backpropagating

the gradient of the loss function and updating the weights in the opposite direction of the

gradient. This process is explained in the next section.

2.3.1 Gradient Descent

As an intuition on how gradient descent works, we can think of a one-dimensional loss

function, for example, the quadratic function L = xθ2. Where θ represents the single

parameter of the network, and x is the input that will have the value one for this example.

Evaluating the function derivative for any value of θ gives the function slope at that point,

or in other words, the change rate of the function. The sign of the derivative also tells us the

change in direction. If the function is increasing, the derivative will be positive and vice-
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versa. If we move the parameter θ in the direction of the decreasing function, an amount

proportional to its derivative value, we will eventually reach the local minimum. Figure 2.5

visually exemplifies this optimisation process.

Figure 2.5: Intuition for gradient descent with one-dimensional function. The red arrows indicate the leaps
during the optimisation process, leading to the global minimum.

Each leap in the figure represents an update in the θ value calculated in the following

manner:

θ := θ − α
dL
dθ

; where
dL
dθ

= 2θ (2.10)

The alpha value in Equation 2.10 is called
√

learning rate , and it regulates the amount

of the update of the parameters in the network. An extremely low learning rate will make

the learning process slow, while a high value can cause the network training to be unstable

and fail to converge. Typical values for the learning rate are lower than 1 and greater than

1e− 6 [19].

In the previous paragraphs, we have seen an intuition of how gradient descent works

for a network with a single parameter. Real networks can have thousands of parameters,
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increasing the dimensionality of the problem. However, the same principles can be applied,

in this case calculating the gradient instead of the derivatives and evaluating the network

with a batch of data despite a single point. When the loss function is calculated for a batch

of data it is called
√

cost function (J ) by convention. Here, the two cost functions used

in the projects of this thesis are explained depending on the application. For regression

problems, the
√

mean square error (MSE) is the usual way to go:

JMSE =
1

m

i=1∑

m

∥∥∥y⃗i − ⃗̂yi

∥∥∥ (2.11)

On the other hand, for classification problems, the output of the network is passed by a
√

softmax (Equation 2.12) layer that calculates the normalised vector of classes probabilities

and then we apply the
√

cross entropy loss (CE) (Equation 2.13) function. This function

gives sparse values for different output classes that have similar inputs, which is the main

reason why it is preferred over the MSE for classification problems.

P(x⃗ ∈ class j) = ŷij =
expexpexp(zij)∑K
k=1 expexpexp(zik)

(2.12)

JCE =
1

m

m∑

i=1

K∑

j=1

yijlogloglog(ŷij) (2.13)

Both the CE and MSE loss functions have smooth gradients that are simple to compute,

thereby facilitating the training process and its convergence.

As mentioned, the optimization algorithm computes the gradient of the cost function

updating the parameters of the network in the process. Continuing with the MLP example,

the first step is to do a forward pass to calculate the outputs for a set of inputs following

the Equations 2.4 in Section 2.2. Then the result of the loss function is calculated using the

outputs of the network and the expected outputs in the dataset. Using the chain rule the

gradients are calculated as follows from the cost function:
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∇ZZZJ (l) = ∇AAAJ (l) ⊙ σ(l)(ZZZ(l))

∇WWWJ (l) =
1

m
∇ZZZJ (l)AAA(l−1)

∇BBBJ (l) =
1

m

m∑
∇ZZZJ (l)

∇AAAJ (l−1) = WWW (l)T∇ZZZJ (l)

(2.14)

And the parameters of each layer are updated as follows:

WWW (l) := WWW (l) − α∇WWWJ (l)

BBB(l) := BBB(l) − α∇BBBJ (l)
(2.15)

In the example explained above, we have assumed that the dataset contains the ex-

pected outputs for the corresponding inputs and the training process is called
√

supervised

learning . Most models developed during this thesis have used supervised learning for the

training. However, due to the difficulty of gathering data for some specific applications, we

often do not have labels (or expected outputs) in our dataset. For instance, other learning

approaches such as self-supervised learning was explored in Chapter 6.

2.3.2 Initialisation and Normalisation

Before plunging into the optimisation of gradient descent, it is crucial to underscore the

importance of correctly initialising the network weights and normalising the input. Re-

garding the
√

initialisation of the learnable parameters, one possibility is to set all of them

to the same value. However, this is not a favourable option, as it results in all neurons

performing identical operations and processing the same gradients, therefore leading to the

so-called
√

symmetry problem . In such a configuration, the network will not be able to

learn and update its parameters, making it useless to have more than one neuron per layer.

For this reason, the initial weight values are sampled from a random distribution. However,

the choice of the distribution must be done carefully to avoid vanishing/exploding gradi-

ent problems or falling into the aforementioned symmetry problem. Gradients vanishing

become too small to have any effect and exploding become too large, leading to numerical

instability. The selection of the distribution is often based on the number of inputs or fan
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in, the number of outputs or fan out, the type of activation and the type of network. The

three most common initialisation techniques in deep learning are listed here:

• The LeCun initialisation [107] normalises the variance of the sampling distribution to

avoid it growing with the number of inputs. This allows the neurons have a significant

output variance. The weights are drawn i.i.d. with zero mean and a normalised

variance with the number of inputs nin:

WWW ∼ N (0, k) where k =
1

nin
(2.16)

• Xavier initialisation [57] also takes into account the fan out nout for a more efficient

performance during backpropagation. It works better with sigmoid and hyperbolic

tangent activations.

WWW ∼ N (0, k) where k =
2

nin + nout
(2.17)

• Finally, He initialisation [67] introduces a slight modification and it works better with

ReLU or LeakyReLU activation types.

WWW ∼ N (0, k) where k =
2

nin
(2.18)

In practice, all the frameworks utilised throughout this thesis offer a default initialisation

for each type of layer. Based on my experience, employing these default initialisations has

proven effective, and I have not encountered the need to alter or fine-tune them. For

instance, the default initialisation for the weights of a fully connected layer in PyTorch 2 is:

WWW ∼ U(−
√
k,
√
k) where k =

1

nin
(2.19)

2Documentation for a fully connected layer in the framework PyTorch: https://pytorch.org/docs/

stable/generated/torch.nn.Linear.html
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Turning now to the
√

normalisation topic, it is also a crucial step before training the

network. The normalisation step sets the inputs to have zero mean and the variance to

1, this way all the input variables are in a similar range. The normalisation of the input

creates a more symmetric cost function, which helps to stabilise the gradient descent step,

allowing us to use larger learning rates or help models converge faster for a given learning

rate. Figure 2.6 depicts an intuition of how the normalisation can affect the shape of the

cost function for a hypothetical network with two parameters. Normalising the input data

can also help the model to generalise better to new data. This is because the model is less

sensitive to the scale of the input data, and is, therefore, less likely to overfit the training

data. Normalised inputs also prevent the problem of exploding and vanishing gradients.

Figure 2.6: An illustrative example of how the normalisation of the input can make the loss function more
symmetric, which speeds up and stabilise the learning process.

It is important to include in this section the
√

batch normalisation technique [79]. It

follows similar principles of normalising the input data but in this case, it normalises the

activations z⃗ of the previous layer at each batch before the activation function is applied by

subtracting the batch mean µ and dividing by the batch standard deviation σ⃗2. Equations

2.20 show how the activation vector is normalised across the length of the batch m.
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µ⃗ =
1

m

m∑

i=1

z⃗i σ⃗2 =
1

m

m∑

i=1

(z⃗i − µ⃗)2 z⃗inorm =
z⃗i − µ√
σ2 + ϵ

(2.20)

After the activation vector is normalised the activations are updated as follows:

⃗̂zi = γz⃗inorm + β (2.21)

Where γ and β are learnable parameters, ϵ is a constant added for numerical stability.

This has the effect of stabilising the distribution of activations and reducing the covariate

shift, which is the change in the distribution of inputs to a layer caused by the change in

the distribution of outputs from the previous layer.

There are several benefits to using batch normalisation:

1. Batch normalisation has been shown to significantly improve the performance of neu-

ral networks, especially when the network is deep or has a lot of layers [79]. It speeds

up and stabilises the training following the same intuition seen earlier with the nor-

malisation of the input data.

2. In some cases, batch normalisation can reduce the need for dropout, a regularisation

technique that we will see Section 2.3.5 used to prevent overfitting since it also adds

a slight regularisation effect.

3. Batch normalisation can make it easier to tune the hyperparameters of a neural net-

work, such as the learning rate because it helps to stabilise the activations and gradi-

ents. This can make the network more robust to changes in the hyperparameters and

allow for more efficient training.

2.3.3 Optimisation

We have seen thus far how a neural network learns using gradient descent by processing the

whole dataset with a forward pass and computing the gradient to update the parameters.

This section points out several techniques to improve the learning process.
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The first technique is called the
√

mini-batch gradient descent . As mentioned in pre-

vious sections, it is a common practice to divide the training dataset into smaller sets called

mini-batches of customisable size (tuneable hyperparameter). If this size is just one training

sample the algorithm is called
√

stocastic gradient descent . When the forward pass and

posterior backpropagation of the gradients is done with fewer data, the parameters of the

network are updated more often and therefore, the learning process is faster. For this rea-

son, mini-batches gradient descent is especially advantageous for training with big datasets,

which is the common trend in deep learning.

When the network has processed all the mini-batches in the dataset, we can say that the

algorithm has run through an
√

epoch . The number of epochs is also a hyperparameter of the

network that can be modified depending on the convergence speed of the specific network.

It is worth mentioning that the order of the mini-batched in the dataset is randomised in

each epoch since it usually leads to faster convergence by avoiding local minima [19].

The primary drawback of mini-batch gradient descent is that the steps taken in each

iteration deviate more from the local minima compared to those taken with the entire

dataset. This occurs because the parameter updates are computed using fewer data points.

The smaller the mini-batch size, the more the step diverges from its path towards the

local minima of the cost function. Consequently, the choice of batch size represents a

trade-off between computational speed and the convergence of the algorithm. In practice,

the memory of the GPU can also limit the batch size. The black arrows in Figure 2.7

represent the updates with mini-batch gradient descent in a simplified network with only

two parameters.

As the reader can observe in Figure 2.7, the mini-batch gradient descent is sensitive to

the non-symmetries in the cost function. In this example, the steps in the direction of the

parameter W2 are much larger compared to the ones in W1 direction. This is because W2

changes faster and therefore its derivatives are bigger, resulting in larger updates. This

non-symmetry problem can be solved by adding momentum to the update of the parame-

ters based on the values of the previous updates. There are several optimisers which add

momentum to the gradient descent, yet the most popular one to the date of this thesis is

the
√

Adam optimiser [87]. The Adam algorithm first calculates the weighted averages of

PhD Thesis, Aston University 2023. 49



DANIEL RODRIGUEZ CRIADO CHAPTER 2. DEEP LEARNING INTRODUCTION

Figure 2.7: Cost function of a network with only two parameters W1 and W2. In the right figure, the
black arrows represent the steps taken by a mini-batch gradient descent algorithm while the red arrows add
momentum to the updates.

the gradients and the square of the gradients:

vtdθ = β1v
t−1
dθ + (1 − β1)∇θθθJ stdθ = β2s

t−1
dθ + (1 − β2)∇θθθJ 2 (2.22)

The authors recommend the values β1 = 0.9 β2 = 0.999 and ϵ = 10−8. Then a bias

correction is applied to the terms calculated in Equation 2.22:

vcdθ :=
vdθ

(1 − βt
1)

scdθ :=
sdθ

(1 − βt
2)

(2.23)

Finally, the parameters of the networks are updated in the following way:

θθθ := θθθ − α
vcdθ√
scdθ + ϵ

(2.24)

Applying these changes to the update function makes the updates look more like the red

arrows in the right plot of Figure 2.7. As you can see, there is a significant improvement in

the number of steps needed to reach the minimum.

Another optimisation trick is called
√

learning rate decay . Normally, a large learning
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rate is acceptable at the start of the optimisation to speed up the process. However,

when the parameters get closer to the minimum it is better to reduce the length of the

steps to guarantee stability. Hence, learning rate decay decrements the size of the update

step - learning rate - when the number of epochs increases. There are numerous forms of

implementing this, here two common examples are shown:

α =
1

1 + γ × epoch
α0 α = α0 ∗ γepoch (2.25)

A high dimensional problem is very unlikely to have local minima because all the pa-

rameters must have derivatives equal to zero at the same point for that to happen. It is

more likely to end up in saddle points, forming plateaus with small gradients in specific

directions that slow down the learning process. The optimisation algorithms seen in this

section help avoid getting stuck in these plateaus. All the projects of this thesis use the

Adam optimiser adding the learning rate decay when necessary to speed up the training.

2.3.4 Bias versus Variance

It is important to dedicate a section to the problem of “bias versus variance” as it represents

the underlying tension when training a neural network. This section starts by defining

both terms and then explains the close relationship between them.
√

Bias refers to the

discrepancy between the average prediction of a model and the actual value that the model

is attempting to predict. Models with high bias tend to not fully adapt to the training data

and oversimplify the model. On the other hand,
√

Variance refers to the variability in the

predictions of a model for a given data point, or the spread of the data. Models with high

variance pay close attention to the training data and do not generalise well to unseen data.

Figure 2.8 depicts three different plots representing the approximation of three models.

The red points are the data in the dataset and the blue line is the approximation of that

specific model. The righthand plot shows a model with a high bias that
√

underfits the

data. The model represented in the middle plot, on the contrary,
√

overfits the dataset by

capturing the noise along with the underlying pattern in the data. The goal of the training

process is to get a model like the one represented in the lefthand plot, with a good balance

between bias and variance. A model capable of capturing the complex patterns in the
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Figure 2.8: Difference between bias and variance and their relation to overfitting and underfitting the
training data.

dataset and, at the same time, capable of extrapolating its predictions to unseen data, not

getting lost in the noise.

There are several ways of checking if our model is overfitting or underfitting the training

data. One of the most common practices is to split the dataset into three subsets: the

training set, the development or validation set and the test set. The training process involves

multiple cycles, known as epochs, where the model goes through the entire training dataset.

After a predetermined number of iterations, the model performs a single forward pass on

the validation dataset to assess its performance. Once the training process concludes, the

final model’s performance is evaluated using the test dataset. Normally, for big datasets,

the proportion of the training set is much bigger than the dev and test sets. For example,

the split proportions could be 0.9, 0.05 and 0.05 for training, dev and test sets respectively.

Thus, if the error over the training set is low and the error over the validation set is relatively

higher, it is probable that the model has a high variance. If the error is high in both sets,

the model probably has a high bias. On the other hand, a high training error and even

higher validation error can mean high variance and bias (usually due to small datasets).

Determining what constitutes a high training error is not always straightforward and is often

assessed by the researcher based on their expertise in the field of knowledge. It is worth

noting that the development and test sets must not have any samples from the training

set. This is considered
√

data leakage and affects the evaluation of the model. Generally,

data leakage occurs when information from outside the training dataset is utilised to create

the model. Additionally, data leakage may also be considered when dealing with extremely

similar data points, such as consecutive frames in a video. The test set is employed to
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compare performances across various models trained with different hyperparameters. We

will see this in more detail in Section 2.3.6.

We have seen how to detect if our model has a high variance or a high bias, but how

can we correct these problems to obtain a balanced network? As a general rule of thumb,

bigger networks or longer training can fix the problem of high bias but also increase the risk

of high variance. On the other hand, more data and regularisation techniques can solve the

problem of high variance but risk the high bias again. The most common regularization

techniques to avoid overfitting (high variance) will be explained in Section 2.3.5. As can

be deduced, achieving a model with low bias and low variance is an iterative give-and-take

problem.

To conclude this section, it is worth mentioning another training strategy known as

k-fold cross-validation. This method involves dividing the training set into k parts and

conducting k training iterations, each time using a different portion as the validation set

[129]. Since this strategy was not explored in this thesis, no further explanation of this

technique is provided in this document.

2.3.5 Regularisation

As previously mentioned, there are two main ways of preventing overfitting and decreasing

the bias component of the model: training with more data and regularisation techniques.

Since obtaining more training data is often problematic, it is crucial to know how to use

regularisation. In this section, we will explore the most prevalent regularisation techniques

in deep learning.

To begin, we will discuss
√

L2 regularisation , a technique that involves reducing the

weights of the network during the backpropagation of the gradient. This method is also

known as weight decay. To implement L2, the cost function is modified by adding the

following regularisation term:

J (W,B) =
1

m

m∑

i=1

L(ŷi, yi) +
λ

2m
∥W∥ (2.26)
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The regularisation hyperparameter λ controls the strength of regularisation. As λ in-

creases, the regularisation effect becomes more pronounced. In practice, the L2 regularisa-

tion is implemented in the optimiser of most Python frameworks. For example, for PyTorch,

the Adam optimiser class accept a weight decay parameter to implement this regularisation

3.
√

Dropout [167] is another effective regularisation technique that involves randomly de-

activating a certain proportion of neurons in the network during each forward pass of the

algorithm. This is achieved by setting a probability for each layer to suppress a neuron.

The weights of the inactive neurons are not updated during the backpropagation of the

gradients.

dropout

×

×

×

×

×

×

×

Figure 2.9: Representation of how the dropout technique deactivate a random number of neurons in the
hidden layers. Note that the connections of this neurons are also removed.

As shown in Figure 2.9, deactivating a neuron through dropout means also removing

its input and output connections, so it does not affect the network. This effectively causes

each update to a layer during training to be performed with a different “view” of the

configured layer, adding noise to the training process. The resulting architecture forces

nodes within a layer to probabilistically take on more or less responsibility for the inputs.

This interpretation suggests that dropout may disrupt cases where network layers co-adapt

to correct errors from previous layers, thereby making the model more robust.

Another interesting and useful technique is called
√

data augmentation . As previously

mentioned, having more data for training is always beneficial and improves the problem

3Documentation for Adam optimiser in PyTorch framework: https://pytorch.org/docs/stable/

generated/torch.optim.Adam.html
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of high variance. However, it is often costly and hard to gather more data points for our

dataset. Data augmentation consists of applying transformations to the available data to

create new data points. These transformations must yield data in the same distribution of

the dataset. For example, data augmentation is a common practice in image classification

where images in the training dataset can be flipped, cropped or rotated to get new data.

Figure 2.10: Simulation of the training and validation loss during training time. The intersection of the
dotted lines marks the optimal point where the training should stop to avoid overfitting.

Finally,
√

early stopping is a technique that involves terminating the training loop when

the error on the development set has not improved after a certain number of epochs, in

order to prevent overfitting. This number is called
√

patience and is a hyperparameter that

can be adjusted. The training aims to perform well on unseen data. Therefore, when the

validation error starts to increase, it indicates that the network is overfitting the training

data and is no longer improving its performance on new data points. Figure 2.10 depicts

both the training set and validation set errors and when it is optimal to stop the training

to avoid overfitting.

2.3.6 Hyperparameter Tuning

The
√

hyperparameters of a deep neural network are the adjustable parameters that gov-

ern the network’s architecture, learning process, and optimization. Not to be confused with

the learnable parameters of the network. The choice of hyperparameters can significantly

impact the model’s performance and convergence rate. Previous sections mentioned and
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explained most of the commonly used hyperparameters to define a neural network such as

the number of layers and hidden units, the learning rate, the type of activation function, the

batch size, the regularization technique, etc. Unfortunately, there is no way to calculate the

hyperparameters to get the lowest loss, therefore, these hyperparameters are tuned in an

iterative process until reaching a good result. The performance of models with different hy-

perparameters is evaluated over a test set which must not have data leakage as explained in

Section 2.3.4. The goal of the test set is to provide an unbias estimation of the performance

so it can be compared to other models.

There are several methods to sample different hyperparameters. Probably, the most

known of these methods is the
√

grid search . The selection of different hyperparameters

within a reasonable range4 is presented in a grid. In a grid search, consecutive elements

have consecutive values for the hyperparameters. Each model in the grid is trained in order

until the best results are found. This method assumes that hyperparameters are equally

important which is not true. For example, in most cases, a small change in the learning

rate affects much more the learning process than a small change in the number of neurons

in a layer. Thus, sampling each hyperparameter from a random distribution often leads to

better results faster. This process is called
√

random search and is the one used for all the

contributions of this thesis. In some specific cases, some hyperparameters were manually

fine-tuned based on the experience in previous experiments.

2.4 Deep Neural Networks for Imagery

Despite its effectiveness, the Multi-Layer Perceptron (as previously described) is primarily

designed for processing flat (unstructured) data. In order to make further progress on larger-

scale and more complex inputs, it is advantageous to exploit simple structures in the inputs

whenever possible by adding relational inductive bias. Ideally, the goal is to achieve better

results with fewer parameters and less data. This section introduces the convolutional

layers that can be applied to image-like input data. Some of the contributions of this

thesis explore the generation of images with neural networks and the following sections will

summarise the basic concepts and architectures used for that purpose. It is worth noting

4A reasonable range for the hyperparameters is given by the experience of the practitioner. However,
previous sections pointed out the typical range for most of them.
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that the convolutional networks can be expressed as a constrained Multi-Layer Perceptron;

however, an MLP would require a significantly larger amount of training data to uncover

the structural inductive biases present in this architecture.

2.4.1 Convolutional Neural Networks√
Convolutional Neural Networks (CNN) are the prime architecture for working with

images in DL. The two main types of layers of CNNs -the convolutional layer and pooling

layer- were first introduced in 1982 by the work of Fukushima et al., the Neocognitron

[52]. Subsequently, in 1989, Lecun et al. integrated these layers with the use of gradient

backpropagation for the purpose of learning convolutional kernel coefficients [105]. In re-

cent years, advancements in computational power, particularly through the use of graphics

processing units (GPUs), have facilitated the development of deeper CNNs, leading to a

revolution in the field of image processing and computer vision. Notable examples of such

models include Alexnet in 2012 [98] and VGG in 2014 [163], which continue to be widely

used to this day. CNNs have been widely applied in various fields, including image classi-

fication, object detection, and image generation. In this text, the focus will be on the field

of image generation. This is related to Chapters 4, 5, and 7, where CNNs are utilised in

generating cost maps in the first two chapters and producing realistic images in the final

chapter.

One of the key advantages of a convolution layer in this context is its ability to leverage

two crucial relational inductive biases: parameter sharing locally and translation equivari-

ance. Parameter sharing allows for the use of the same weight across different positions by

convoluting a kernel or filter in the input image. These results in sparse connections and a

reduction in the number of parameters required. Figure 2.11 shows a diagram of how a 2D

convolution of a 3 × 3 kernel is performed. Each pixel of the output is generated by sliding

the kernel over the image. In this example, the kernel is used for detecting vertical edges in

an image; however, in an actual CNN, the kernel parameters are learned during the training

process, and typically, multiple different kernels are implemented. Equation 2.27 describes

this process in the case of an RGB channel performing a 3D convolution.
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Figure 2.11: Schematic representation of a 2D convolution for vertical edges detection.

X ′
abc = σ


bc +

n∑

i=1

m∑

j=1

d∑

k=1

Kijkc ·Xa+i−1,b+j−1,k


 (2.27)

This equation assumes an RGB image with d channels where X ′ ∈ Rh′×w′×d′ is the result

of the convolution for d′ channels, X ∈ Rh×w×d is the input image, K ∈ Rn×m×d×d′ is the

kernel and b⃗ ∈ Rd′ is a bias vector.
√

Convolutional layers stack many of these layers and

concatenate the results in the channel dimension of the output.

Five hyperparameters configure a convolutional layer: the kernel size, the padding, the

stride, the number of kernels (or the number of channels in the output) and the number of

channels in the input. Figure 2.11 shows a representation of the first three hyperparameters.

The padding adds a border of zeros to the image, while the stride indicates how many pixels

the kernel moves in each iteration of the convolution. These two hyperparameters help

preserve spatial dimensions, prevent information loss, and control the output size of the

layer. Equation 2.28 shows how the two first dimensions of the image (height and width)

change in function of these parameters.
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no =

⌊
ni − k + 2p

s

⌋
+ 1 (2.28)

Where the output dimension no is calculated from the input dimension ni, the kernel

size k, the padding size p and the stride s.

Another essential layer in a CNN is the
√

pooling layer that is used to increase the

receptive field of neurons, and as a consequence, the images are downsampled. These layers

reduce the size of the feature map, which in turn makes computation faster. They do

not have any learnable parameters. These layers convolve a kernel aggregating information

from the surrounding pixels with the desired operation. Probably the most used aggregation

operation is the maximum and this kind of pooling layer is called max pooling.

On the contrary, there are several strategies for upsampling the input image depending

on the requirements. The most famous strategy is the use of
√

transpose convolutional

layers. They perform the opposite operation of the convolutional layers by multiplying

each pixel of the input image for each of the elements of the kernel to generate the pixels

of the output image. The dimensions of the output image can be calculated as follow:

no = (ni − 1)s− 2p + k + po (2.29)

The main problem of the transposed convolutional layers is that their output tends to

contain the so-called chequered pattern in the output image. This pattern arises when the

kernel size is not divisible by the stride, leading to artefacts in the output image resembling

a checkerboard. This issue is typically addressed by first upsampling the image using a

method such as bilinear interpolation and then applying standard convolutional operations.

Finally, it is crucial to mention the
√

residual blocks or skipping connections. This

strategy consists in summing the activations of early layers in a CNN in later stages of the

network. Residual blocks are extremely useful for deep networks avoiding the later layers

“forget” information of the input. They also help prevent vanishing gradients in very deep

networks.
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2.4.2 Image Generation

In the previous section, we explored the basic building blocks of image processing with deep

learning. This section focuses on the main architectures that build on top of CNNs for

image generation.

First, we introduce the U-Net architecture. Although this network was originally de-

signed for generating image segmentation masks, it can also be employed in the creation of

simple images, such as the cost maps in Chapter 5.

Second, for generating more complex and realistic images, there are three main streams

of work in the literature: Generative Adversarial Networks (GANs), Variational Auto-

Encoders (VAEs), and diffusion/denoising models. Due to the ability of GANs to generate

high-resolution images and their efficiency, a variant of this model is used in Chapter 7 for

generating realistic traffic images. Of the three mentioned architectures, only GANs are

explained in this section, as they are related to this thesis. The exploring of the promising

diffusion and denoising models is proposed for future work.

U-Net

The
√

U-Net architecture was initially proposed by Ronneberger et al. in their work [151] for

the application of biomedical image segmentation. This architecture comprises two distinct

components: a downsampling section and an upsampling section. Within the downsampling

segment, convolutional and pooling layers are stacked to extract abstract representations

of the input image, effectively reducing its dimensions to a latent space representation.

Conversely, the upsampling section utilises transpose convolutional layers to upsample these

abstract representations, restoring their spatial dimensions to match those of the original

input image. Consequently, both input and output images share identical dimensions. This

particular architecture is widely recognised as an encoder-decoder network.

Figure 2.12 presents a schematic illustration of the original U-Net architecture, adapted

from [151]. The width of the rectangles corresponds to the channels of the volumes, while

their height represents the spatial dimensions. It is important to note the presence of skip

connections between the downsampling and upsampling sections, achieved by concatenating

the activations from the former to the latter. These connections play a crucial role in the
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Figure 2.12: Adapted schematic representation of the U-Net architecture, based on the original design
presented by Ronneberger et al. [151].

exceptional performance of the U-Net architecture. To provide an intuitive understanding

of how these connections function, consider that they transmit spatial information from the

network’s earlier layers to its later layers. This spatial information is then combined with

the abstract information extracted from the latent space, thereby enriching the output.

Generative Adversarial Network (GAN)

The
√

Generative Adversarial Network (GAN) architecture was first introduced by

Goodfellow et al. [61] in 2014. However, it was the remarkable outcomes achieved using

deep CNNs within Deep Convolutional Generative Adversarial Networks (DCGANs) [141]

that truly catapulted the popularity of GANs for image generation.

The GAN model architecture involves two sub-models: a generator model G responsible

for creating new examples and a discriminator model D for classifying whether the gener-

ated examples are real, originating from the domain, or fake, produced by the generator

model. The generator captures the data distribution, while the discriminator estimates

the probability that a sample is derived from the training data rather than the generator,

thereby functioning as a binary classifier. A key advantage of GANs is their adversarial

training approach, as opposed to supervised learning, which circumvents the necessity for
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annotated data. In probabilistic terms, the generator learns a distribution pg over the data x

by constructing a mapping function from a prior noise distribution pz(z) to the data space

as G(z; θg). Additionally, the discriminator, D(x; θd), yields a single scalar denoting the

probability that x originated from the training data rather than pg. Figure 2.13 illustrates

a basic representation of a GAN’s structure.

Figure 2.13: Basic schematic representation of the GAN architecture.

G and D are both trained simultaneously. We need the generator to produce fake

images to train the discriminator with, and at the same time, the discriminator gives us

a loss function to train the generator with (chicken and egg problem). They are trained

adversarially, it is a race between two competing criteria known as a min-max game. The

parameters θg for G are adjusted to minimise log(1 −D(G(z))), and the parameters θd for

D are adjusted to maximise log(D(X)) as if they are following the two-player min-max

game with value function V (G,D) as expressed in Equation 2.30. To facilitate convergence

usually we do several updates of the discriminator parameters for each generator update.

min
G

max
D

V (D,G) = Ep∼pdata [log(D(x))] + Ez∼pz(z)[log(1 −D(G(z)))] (2.30)

GANs represent a parametric approach extensively employed for image synthesis. Once

trained, the generator can synthesise images based on a noise vector seed. When contrasted

with the blurry and low-resolution outcomes produced by other deep learning methods

such as Variational Autoencoders (VAEs) [88], GAN-based techniques [81, 136] yield more
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realistic results featuring higher resolution and finer details. This serves as the primary

rationale for utilising this architecture in Chapter 7.

Conditional GAN

A conditional GAN (cGAN) is a modification of the standard GAN architecture that enables

the conditioning of the generator’s output. This concept was first introduced by Mirza and

Osindero in [122], where the authors conditioned both the generator and discriminator with

supplementary information y. This information could be any auxiliary input, such as class

labels, data from other modalities, or even a graph, as proposed in Chapter 7.

Conditioning can be performed by introducing y to both the discriminator D and gener-

ator G as an additional input channel. In the generator, the prior input noise z, randomly

sampled from a uniform Gaussian pz(z), is combined with y to form a joint hidden repre-

sentation. The proposed objective function is given in Equation 2.31.

min
G

max
D

V (D,G) = Ep∼pdata [log(D(x|y))] + Ez∼pz(z)[log(1 −D(G(z|y)))] (2.31)

In the generator, the prior input noise pz(z) and y, the condition or constraint, are

combined. The discriminator receives x and y as inputs. It is worth noting that newer

versions, such as SPADE [136], introduce innovative ideas for conditioning the generator,

such as embedding y between its layers. This will be explored in greater detail in Chapter

7.
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Chapter 3

Graph Neural Networks

The previous chapter presents the basics of deep neural networks and the most relevant

architectures with regard to the contributions of this document, leaving Graph Neural

Networks (GNNs) -the main focus of this study- to this chapter. Hence, the history of GNNs,

their operation, the main applications, and details of the variations used and explored in

this thesis will be introduced. Throughout the discussion, the unique advantages that GNNs

offer over other Deep Learning approaches for graph analysis will be emphasized, while also

spotlighting the remaining limitations in the field.

A
√

Graph Neural Network is a relatively novel deep learning paradigm of neural

networks capable of processing graphs. According to [15], these models can generalise

better over structured graph data than conventional CNN and recurrent neural networks.

It induces stronger relational inductive bias into the model, leveraging the relations among

data in a more efficient manner. This better performance on graphs presents a notorious

advantage in real problems’ usability since numerous domains are easier represented as

graphs rather than images, tensors or vectors. It is worth noting that GNNs are invariant

to node and edge permutations, a crucial perk in most applications as it will better explain

in Section 3.3

A. Sperduti et al. introduced the concept of working with structure data in graphs using

neural networks in [164] in 1997. However, it was not until 2005 that the first GNN was
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formally proposed with the work of Marco Gori et al. [63] and first used in a real application

by Franco Scarcelli et al. [157] for ranking web pages with outstanding results. The reader

can find multiple surveys in GNNs, for example, [195] and [204], that show a summary of

the most significant developments carried out in this field. Battaglia et al. [15] perform

a review and unification of the different techniques developed in this new deep learning

paradigm up to 2018.

(a) Molecules as graphs (b) n-body problem as graph

(c) Image as graph (d) Text as graph

Figure 3.1: Examples of graphs. Adaptation from Figure 2 of [15].

Applications of Graph Neural Networks have been explored in a wide range of domains

across supervised, semi-supervised, unsupervised and reinforcement learning settings. Due

to their flexibility, they can obtain state-of-the-art performance in comparison with deep

learning architectures in regression and classification problems [157]. In addition, their

greatest potential lies in the processing of graphs, performing tasks such as node and graphs

classifications and edge predictions. For example, predicting nodes or edges in a knowledge

graph [190]. Next are listed some recent usages in different areas: learning the dynamics of

physical systems (Battaglia et al., 2016 [14]; Sanchez-Gonzalez et al., 2018 [156]), predicting

the chemical properties of molecules (Duvenaud et al., 2015 [48]; Gilmer et al., 2017 [55])

or even in imagery for classifying and segmenting images and videos (Wang et al., 2018

[189]; Hu et al., 2017 [73]). The works cited above are just a few examples of a much

longer list. For the interested reader, Jie Zhou et al. in [204] review most of the relevant
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applications divided into three categories: structural scenarios, non-structural scenarios and

other scenarios such as generative models and combinatorial optimization problems. Despite

the daunting amount of applications, the current PhD will focus on the fields related to

sensorised environments understood as explained in Chapter 1.

The remainder of this chapter will provide an intuitive explanation of how these models

work. Following that, the GNN variants explored in the contributions of this thesis will be

detailed. In the concluding subsection, some of the most relevant advantages and limitations

of GNNs will be discussed.

3.1 An Intuition of how GNNs Work

It’s been mentioned that a GNN can process graphs, but how is a graph defined in the

context of a GNN? The
√

graphs fed into a GNN can be formally defined as a two-element

tuple G = (V, E) with N nodes vi ∈ V and edges (vi, vj) ∈ E . Each node vi is associated

with a set of features in the form of a vector h⃗i. In that sense, nodes can represent abstract

information or specific entities in an environment, as we will see in the practical applications

of the remaining chapters. It is up to the graph designer how to create these representations.

Typically, the feature vectors are stacked vertically forming a feature matrix H of dimensions

N × hn, where N is the number of nodes in the graph and hn is the length of the feature

vectors. On the other hand, edges link pairs of nodes, allowing the information interchange

between their feature vectors. In some variants (see Section 3.2), the edges can also have

attached a feature vector e⃗.

Mathematically, graphs can be expressed in different formats such as a list of nodes

pairs representing the edges (sparse representation) as most programming frameworks do1.

This format has the advantage of saving space when storing graph structure. However, for

the sake of clarity, an adjacency matrix (dense representation) will be utilized to define the

structure of the graph. The
√

adjacency matrix A is NxN where N is the number of nodes

in the graph. The position i, j of the matrix will store a 1 if there is a connection between

the node i and j and 0 otherwise.

1For example, DGL framework for python uses a list of two-element tensors to store the graph: https:
//docs.dgl.ai/en/0.4.x/generated/dgl.DGLGraph.edges.html
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Aij = Aji =





1 i ↔ j

0 otherwise
(3.1)

With the graph description established, we will discuss the process of information ex-

traction by a GNN layer from these graph representations. The basic idea behind GNNs is

to learn a representation of the nodes in a graph by aggregating information from the neigh-

bouring nodes (and potentially edges). This is typically done by passing messages between

nodes, where each message is computed as a learnable function of the current node’s features

and the features of its neighbouring nodes and edges. The messages are then combined to

update the representation of the current node. After that, the representation is updated

with an activation function. This process is repeated in the multiple layers of the network,

and the final representations of the nodes are used for various tasks, such as node classi-

fication, link prediction, and graph classification. It is important to note that the graph

structure of a graph neural network (GNN) remains consistent from layer to layer, with the

only variation occurring in the features of the nodes. Additionally, it is worth highlighting

that the input graph in a GNN can have an arbitrary number of nodes and edges, as the

weights of the network are shared locally, as will be seen in more detail in the next section.

This property provides an important advantage for a wide range of applications.

Figure 3.2: Pipeline of a graph neural network.

Figure 3.2 represents the pipeline of a GNN and how the final representation (output

layer) can be used for the different tasks. For node classification, a classifier (for example
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a softmax layer or an MLP) is applied to the node features. On the other hand, graph

classification is done by aggregating the features of the nodes first (for example summing or

averaging them) and then applying the classifier. If we want to predict the probability of

an edge connecting two nodes, it is possible to train an MLP yielding this probability and

taking as input the features of the two nodes. Finally, it is worth noting that it is possible

to perform a regression from a graph by configuring the layers of the network to have a

single feature in the output representation of the nodes.

3.2 GNN Variants Explored in this Thesis

Due to the rapid blooming of Graph Neural Network models, it is out of the scope of

this work to study all of them. This section shows the most relevant GNN variants for

the present thesis, all of them producing cutting-edge results in the areas mentioned at the

beginning of this chapter. This section provides more detail about how the information from

the different nodes is aggregated in the GNN layers, starting with -in my opinion, the most

basic architecture- the Graph Convolutional Network (GCN). For coding all these networks,

the Python library PyTorch2, which is well-known in the deep learning community, has

been employed. Two main packages build on top of PyTorch for working with graphs and

relational data: Deep Graph Library (DGL)3 and PyTorch Geometric4. These libraries have

many different tools to work with graphs as well as the implementation of the following GNN

variants. Most of the applications of this thesis are developed with DGL but there are some

examples developed with PyTorch Geometric for comparison purposes.

The increasing interest in GNNs has led to the development of numerous variants from

various scientific domains, each addressing graph analysis from different perspectives. This

has resulted in complex classifications with multiple subcategories, as shown in [204]. Nowa-

days, most of the non-dynamic (not leveraging the time evolution in the data) variants can

fall into three different categories: convolutional, attentional and message-passing.

• Convolutional: Aggregate neighbours with averaged weights. They work well for ho-

mophilous graphs where edges encode label similarity. Very scalable and lightweight.

2Pytorch documentation: https://pytorch.org/
3DGL documentation: https://www.dgl.ai/
4PyTorch Geometric Documentation: https://pytorch-geometric.readthedocs.io
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• Attentional: The aggregation is done with implicitly learned weights via an attention

mechanism that is based on the nodes’ features. They are also lightweight but at the

same time, they achieve more expressiveness in the solutions giving more importance

to some connections over others.

• Message-passing: The aggregation is done by sending across a message in the form

of a vector from the source node to the receiver node. This message is computed by

a learnable function. They perform better in complex problems. However, storing

and computing an entire vector for each node of the graph can lead to scalability or

learnability issues.

In this thesis, at least one model from each of these categories has been explored. For

convolutional layers, work has been done with Graph Convolutional Networks (GCNs) and

Relational Graph Neural Networks (RGNN). Within the attentional and message-passing

categories, the Graph Attention Networks (GAT) and Message-Passing Neural Networks

(MPNN) have been respectively explored.

3.2.1 Convolutional Networks√
Graph Convolutional Networks (GCN)5: GCNs are first described in [90] where Kipf

et al. use semi-supervised learning on three different datasets. Each node of the net is

processed in parallel and gets an average sum of the feature vectors of the nodes linked to

it. Then, this averaged vector is multiplied by the weights matrix and an activation function

will yield the final updated output. This procedure is similar to applying a fully connected

network per node but taking into account the information of the linked nodes. The intuition

of GCN comes from applying convolutions on graphs in a similar way to how a CNN does

in an image-like structure. Equation 3.2 describes how the output feature vector h
(l+1)
i of

a node i on layer l + 1 is computed.

h⃗
(l+1)
i = σ


 ∑

j∈N (i)

1

Cij
W (l)h⃗

(l)
j


 (3.2)

5DGL reference documentation: https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.GraphConv.

html
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In equation 3.2, N (i) is the set of nodes j so that an edge (j, i) exists in the graph, W (l)

is the trainable weight matrix for the layer l, σ (·) is the activation function and Cij is a

normalisation parameter. You will notice that the equation is very similar to the equation

used in an MLP but without taking into account the bias term. That performs the update

of the feature vector for just one node, if we want to compute the update of all nodes at

once we can use matrixes multiplication (Equation 3.3).

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(3.3)

Here, H(l) refers to the matrix resulting from vertically stacking all h⃗
(l)
i vectors, Ã is an

adjacency matrix with self-edges and W is a weight matrix. D̃ is the degree matrix of Ã

and the opperation D̃− 1
2 ÃD̃− 1

2 normalizes the adgencency matrix according to its degree.

The multiplication of the normalised A with H has the effect of aggregating the information

of neighbouring nodes performing a sum as represented in Equation 3.2.
√

Relational Graph Convolutional Network (RGCN)6: This network is introduced

by Shlichkrull et al. in [158] for predicting relations between entities and discovering new

entity classes in knowledge graphs. The rationale behind Relational Graph Convolutional

Networks (RGCN) is to treat each different edge with a different linear transformation,

depending on the labels of the edges. These labels can only be types and are not meant to

contain additional metric information (unlike the MPNN edge features explained in Section

3.2.3). They build on top of GCNs, using a different learnable weight matrix for each label

type. The propagation model for the feature vector of the node i is shown in equation 3.4.

h
(l+1)
i = σ


∑

r∈R

∑

j∈Nr(i))

1

Ci,r
W (l)

r h
(l)
j + W

(l)
0 h

(l)
i


 (3.4)

Where N r(i) is the set of vertices with an outgoing edge towards vertex i under the rela-

tion r and Ci,r is a “problem-specific” normalisation constant. W
(l)
r and W

(l)
0 are the learn-

able matrices for r-labelled edges and self-edges, respectively. For highly multi-relational

6DGL reference documentation: https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.

RelGraphConv.html
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data, the original paper suggests using basis regularization by decomposing Wr to avoid an

enormous number of parameters.

W (l)
r =

B∑

b=1

a
(l)
rb V

(l)
b (3.5)

Where B is the number of bases, V
(l)
b are linearly combined with coefficients a

(l)
rb .

3.2.2 Attentional Networks√
Graph Attention Networks (GAT)7: Velickovic et al. introduce this model in [182],

which is one of the most expressive and most popular variants at the present date thanks

to its attention mechanism. This net is similar to GCN with the difference that a learnable

attention factor α is applied to the links. The network will learn the weights of each node

along with the attention parameter of each link giving more importance to some connections

over others. Additionally, GATs introduce a multi-head attention mechanism. K indepen-

dent attention parameters are used in the same layer by concatenating the activations of

each attention mechanism. The multi-head mechanism has proved to stabilize the learning

process of self-attention.

h
(l+1)
i =

∥∥K
k=1

σ
( ∑

j∈N (i)

αk
ijW

k, (l)h
(l)
j

)
(3.6)

In Equation 3.6, the feature vector of node i is updated from the neighbouring nodes

weighted by a learnable attention parameter α. The results are then concatenated at the

output. The parameter α is calculated as follows:

αij = softmax(eij) =
exp(eij)∑

k∈N (i) exp(eik)

where eij = σ
(
a⃗T [Wh⃗i∥Wh⃗j ]

) (3.7)

eij indicates the importance of node j’s features to node i.

7DGL reference documentation: https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.GATConv.

html
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Although it has not been used in this thesis (largely due to its recent introduction), it is

worth mentioning the creation of the second version of this model called GATv2 by Brody

et al. in [23] in 2022. Brody’s work shows that the attention performed by the first GAT

version is limited since the ranking of the attention scores is unconditioned on the query

node. They solve this problem by changing the order of operations in GATv2 to calculate

eij :

eij = a⃗Tσ
(
W · [⃗hi∥h⃗j ]

)
(3.8)

In this case, the parameters a⃗ are applied after the nonlinearity and the W parameters

after the concatenation of the nodes’ features.

3.2.3 Message-Passing Networks√
Message-Passing Neural Network (MPNN)8: This variant is proposed by Gilmer et

al. in [55] for molecule prediction. One of the most attractive characteristics of this variant

is that it incorporates the possibility of adding features for the edges of the graph. Thus, the

information of neighbouring nodes is aggregated taking into account the connection features.

The architecture of this variant can be adapted to describe other different models of the

literature. Specifically, in the contributions of this thesis, the adaptation for convolutions

without hidden states for the edges has been used. This implies that the model does not

learn the feature of the edges, but instead leverages this information from the input graph.

In other words, the edge features are the same for the input and output graphs. Using the

same equations from [55] for graph convolutions, first, the network calculates the messages

from the surrounding nodes (Equation 3.9). These messages are computed from a learnable

function fm(·) (for example an MLP) taking as input the concatenation of the source node

features h⃗
(l)
i , the destination node features h⃗

(l)
j and the edge features e⃗ij .

m⃗
(l)
i =

∑

j∈N (i)

fm

(
h⃗
(l)
i , h⃗

(l)
j , e⃗ij

)
(3.9)

8DGL reference documentation: https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.NNConv.html
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After the messages of each edge are computed, the features of each node are updated

with another learnable function fu(·) as Equation 3.10 describes.

h⃗
(l+1)
i = fu(⃗h

(l)
i , m⃗

(l)
i ) (3.10)

Note that the summation in Equation 3.9 acts as an aggregation function that can be

replaced by any other aggregation operation depending on the necessities, such as average

or maximum value.

3.2.4 Comparison Among Cited Models

It is interesting to include a comparison made in [118] of the performance of different GNNs

in the task of generating a discomfort score indicating the disturbance to humans by a

robot in a room. (This model is later used in the work developed in Chapter 4 to create a

disruption maps dataset.)

Framework
Network

architecture
Training Loss

(MSE)

DGL GCN 0.02283

DGL GAT 0.01701

DGL GAT2 0.01740

PyG GCN 0.29778

PyG GAT 0.01804

PyG RGCN 0.02827

PyG RGCN||GAT 1 0.02238

PyG RGCN||GAT 2 0.02147

PyG RGCN||GAT 3 0.0182

Table 3.1: Comparison table among different GNN structures. From [118]

As you can see in table Table 3.1, GAT achieves the better loss for this problem. However,

this is not always the case, for example, RGCN yields better performance in the experiments

conducted in Chapter 4. The most likely reason for the better performance of GAT in [118]

is the rich information encoded in the features of the nodes and the reduced number of

nodes. This makes it easier to infer the different kinds of relations without the need of

adding information to the edges. On the other hand, the graphs used in chapter 4 have

a significantly larger amount of nodes and the features in the gird nodes provide scarce
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semantic information to the network. Note that in Table 3.1, GAT2 refers to a network

with two MLP layers to compute the messages instead of a single perceptron and not to

the second version of Graph Attention Networks described earlier.

3.3 Advantages of GNNs

In light of the focus of this thesis, it is crucial to address the question of why GNNs are

useful in many applications of the current deep learning panorama. This section aims to

introduce the primary advantages of this new paradigm compared to traditional approaches

for extracting information from graphs.

One of the primary advantages of GNNs is their ability to effectively process graphs. This

is significant because there are a plethora of problems that can be naturally represented

as graphs. As discussed at the beginning of this chapter (see Figure 3.1), molecules in

chemistry, free body particles, maps and a large etc. can be represented as graphs. Images

and sequences of text can be also easily translated into a graph, consequently, CNNs and

recurrent neural networks can be formalized as a specific case of GNNs. Even transformers

[180] are a specific version of GATs [85]. Therefore, advances in GNNs will translate into

advances in other areas of deep learning.

Due to the inherent characteristics of graphs, classic ANNs cannot work with them effi-

ciently. Three of these characteristics that GNNs are equipped to handle will be highlighted.

The first one is that the size and shape of a graph can differ from another from the same

distribution. A key advantage of GNNs is the flexibility that they offer in terms of input

dimension. In contrast, traditional machine learning models such as MLPs or CNNs are

trained with a fixed dimension of input variables. If the same trained architecture needs to

be applied to inputs of different dimensions, the entire network must be retrained. GNNs,

however, do not have this limitation and can handle input graphs with variable sizes. This

allows for more efficient and versatile modelling of real-world problems.

The concept of isomorphic graphs is an important characteristic in graph theory, imply-

ing that two visually distinct graphs can be structurally identical following the application

of an isomorphism function. To illustrate, even if the nodes of the graphs are repositioned,
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the structure remains unchanged despite the nodes being in a different order. As the nodes

of a graph are not presupposed to follow any specific order, Graph Neural Networks (GNNs)

are, by necessity, required to exhibit permutation equivariance. This means that any per-

mutation matrix P applied to the node features H or the adjacency matrix A must not

affect the result of the network:

f(PH,PAP−1) = f(H,A) (3.11)

The third and arguably the most challenging characteristic is that the graph structure

is non-euclidian. CNNs can operate over images because the underlying grid of the image

information is fixed and allows Euclidian operations. Concepts such as the Euclidian dis-

tance between two graphs or two nodes are not defined. GNNs can perform convolutions

in a non-euclidian space accounting for complex higher-order information such as motifs or

substructure counts that standard CNNs cannot discover.

This thesis explores the application of GNNs to sensorised environments, where graphs

seem to be convenient representations of the problems. These problems deal with different

input sizes, for example, the application in Chapter 6 can use a different number of sensors

(cameras) while the applications in Chapters 4, 5 and 7 have to account for a variable

number of entities in their environments. Furthermore, the environments in Chapters 4 and

5 encompass underlying interactions without a fixed pattern, which can only be represented

with non-euclidean structures such as graphs. In these chapters, it’s demonstrated that

GNNs are capable of overcoming these pitfalls and achieving state-of-the-art results for the

specific applications.

3.4 Limitations of GNNs

Despite the proven effectiveness of GNNs for a multitude of graph-related tasks, they still

possess substantial limitations. This section goes through the most relevant drawbacks of

learning on graphs with GNNs and explains how they can affect the results of the thesis.
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3.4.1 Problems with the Depth, Over-Smoothing and Over-Squashing

One of the most relevant impediments is the difficulty of training deep GNN networks

[133]. CNNs experienced a meteoric rise in popularity with the increasing number of layers

leading to the development of very deep networks. For instance, popular networks such as

VGG16 and VGG19 [162] using 16 and 19 layers respectively, can extract richer information

from images than their shallower predecessors. The visualization of the features learned by

CNNs from face images indicates a progressive increase in complexity, starting from simple

geometric shapes (edges and lines) and culminating in complete facial structures. However,

this compositionality does not appear to be achievable with graphs. As noted in [38], it

appears that GNNs cannot count induced subgraphs for any connected pattern of 3 or more

nodes.

The main two problems concerning excessive depth in GNNs are the over-smoothing of

the layers’ output [133] and the over-squashing of the feature vectors [7]. Regarding the over-

smoothing of the output, the node features become smoother when using more layers and

the performance decay as they converge to a similar vector losing expressiveness. The over-

squashing of the feature vectors is a bottleneck problem, which results in the compression of

information from an exponential number of neighbours into fixed-size vectors. This problem

limits the propagation of information between distant nodes in the graph even if the GNN

has many layers. These challenges are an important consideration when designing GNN

architectures and must be addressed to improve the performance of the model.

CNNs overcame depth-related problems such as vanishing gradients and overfitting (due

to a large number of parameters) thanks to the implementation of residual connections

and regularization techniques. Significant effort has been done to apply similar techniques

to graphs allowing the training of deeper GNNs. For example, several works applying

residual connections to GNN layers [109][31][199], graph normalization techniques such as

NodeNorm [205] or PairNorm [203] and regularization techniques in works like DropEdge

[150] or DropNode [76]. Chen et al. [32] gather most of the literature on these tricks

comparing their performance in a fair benchmark. While these techniques allow training

deeper GNNs, they fail to demonstrate significant gains.

As depicted in Table 3.2, sourced from [32], the accuracy of all models and datasets
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Backbone Settings
Cora Citeseer PubMed OGBN-ArXiv

2 16 32 2 16 32 2 16 32 2 16 32

GCN

Residual 74.73 20.05 19.57 66.83 20.77 20.90 75.27 38.84 38.74 70.19 69.34 65.09
Initial 79.00 78.61 78.74 70.15 68.41 68.36 77.92 77.52 78.18 70.16 70.50 70.23

Jumping 80.98 76.04 75.57 69.33 58.38 55.03 77.83 75.62 75.36 70.24 71.83 71.87
Dense 77.86 69.61 67.26 66.18 49.33 41.48 72.53 69.91 62.99 70.08 71.29 70.94
None 82.38 21.49 21.22 71.46 19.59 20.29 79.76 39.14 38.77 69.46 67.96 45.48

SGN [193]

Residual 81.77 82.55 80.14 71.68 71.31 71.00 78.87 79.86 79.07 69.09 66.52 61.83
Initial 81.40 83.66 83.77 71.60 72.16 72.25 79.11 79.73 79.74 68.93 69.24 69.15

Jumping 77.75 83.42 83.88 69.96 71.89 71.88 77.42 79.99 80.07 68.76 70.61 70.65
Dense 77.31 81.24 77.66 70.99 67.75 66.35 77.12 72.77 74.84 69.39 71.42 71.52
None 79.31 75.98 68.45 72.31 71.03 61.92 78.06 69.18 66.61 61.98 41.58 34.22

Table 3.2: Table from [32] showing the accuracy results (%) of different skip connection mechanismos
among different datasets (Cora, Citeseer, PubMed, and OGBN-ArXiv) and different network sizes (2/16/32
layers of GCN and SGC).

generally decreases as the number of layers increases. Although this table illustrates the

results obtained using various random dropping techniques, other tables in [32] also display

the same declining trend in performance with deeper networks. Chen and colleagues aim to

identify the optimal combination of strategies to train deep Graph Neural Networks (GNNs)

in [32]. Despite their efforts to enhance the efficacy of GNNs with deeper architectures,

their findings do not demonstrate substantial improvements. Consequently, whether deeper

GNNs will yield superior results remains an open research question.

As discussed thus far, the performance of Graph Neural Networks (GNNs) tends to dete-

riorate as the networks become deeper. Nonetheless, the question remains: do we actually

require deep GNNs? The answer to this inquiry largely depends on the characteristics of the

graphs present in the dataset. Deeper networks perform more aggregations, which enables

nodes that are further away in the graph to share information. However, if all nodes in the

graph are within a few hops of each other, or communication between distant nodes is not

necessary, deeper networks become irrelevant. For instance, in social networks, predictions

often rely solely on short-range information from a node’s local neighbourhood and do not

benefit much from additional remote information. In such cases, shallower and wider net-

works (i.e., networks with more neurons per layer) may prove to be the best solution. To

validate the expressive capability of the networks employed to solve the problems addressed

in this thesis, a modest experiment is conducted, which is detailed in Appendix B. The

results reveal that for the problems tackled in this work, shallow networks possess sufficient

power to produce state-of-the-art results.
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3.4.2 Problems with Isomorphism and Different Types of Aggregators

Another substantial limitation appears in the task of graph classification with GNNs. It

happens when trying to distinguish between topologically similar graphs or validate if two

graphs are isomorphic. Two isomorphic graphs have the same connectivity and differ only

by a permutation of their nodes. The task of verifying if two graphs are isomorphic is called

the graph isomorphism test and it is not clear what is the complexity of this problem.

The classical Weisfeiler-Lehman (WL) isomorphism test [191] in 1968 claimed to solve the

problem in polynomial time. However, it has been seen that the WL test fails in some

simple cases as the one represented in Figure 3.3.

Figure 3.3: Non-isomorphic graphs that fail at the WL isomorphism test. They are both classified as the
same type of graph.

Similar to GNNs, the WL test iteratively updates a given node’s feature vector by

aggregating feature vectors or hashes of its network neighbours. What makes the WL test

so powerful is its injective aggregation update that maps different node neighbourhoods to

different feature vectors. For example, using an injective aggregation function as the sum,

the MPNN is at most as powerful as the WL tets and some popular choices for aggregators

used in the literature such as maximum or mean are actually strictly less expressive than

WL [198]. The work done in [198] introduces a new network named Graph Isomorphism

Network (GIN) that uses summation as the aggregation function for countable features.

They show that its discriminative/representational power is equal to the power of the WL

test.

More powerful versions of the WL test, such as the k-WL test [75], recolour k-tuples

of vertices of a graph at each step according to some neighbourhood aggregation rules and
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stops upon reaching a stable colouring. If the histograms of colours of the two graphs are

not the same, the graphs are deemed not isomorphic; otherwise, the graphs are possibly (but

not necessarily) isomorphic. The greater the k the more expressive the test, thus, there exist

examples of graphs on which k-WL fails and (k+1)-WL succeeds, but not vice versa. There

are works on GNNs applying the k-hop in the k-WL test that are strictly more powerful

than message-passing architectures. One such first architecture, k-GNN, was proposed by

Morris et al. [125]. The problem with these GNN variants is their resource consumption

making them impractical for real applications.

The work of Corso et al. in [42] extends the study in [198] to the continuous space with

more aggregators. They prove the following theorem:

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets

of size n whose underlying set is R, at least n aggregators are needed.

I have deemed it important to mention this problem of GNNs since it is one of the main

limitations in the literature. However, there is not any application in this thesis for graph

classification. All of the work developed in this thesis do regressions on graphs or edge

prediction using a continuous representation of the features. For this kind of application,

the graph isomorphism problem is not as relevant. Besides, in practice, higher capacity

does not necessarily offer better generalisation (sometimes quite the opposite).

3.5 Conclusions

This chapter highlights the vast potential of Graph Neural Networks, but the PhD fo-

cuses specifically on their application in sensorised environments, where their advantages

(discussed in Section 3.3) can be harnessed to great effect. The upcoming chapters will

delve into the use of powerful GNN variants (outlined in Section 3.2) to solve problems in

sensorised environments, to achieve state-of-the-art results.

While there are still limitations in this field, as discussed in Section 3.4, this thesis hopes

to contribute to the wider adoption of these remarkable ANNs, hopefully, overcoming these

limitations in the prompt future.
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Chapter 4

Human-Aware navigation with

Static Cost Maps

The work presented in this chapter has been adapted from the following publications:

[146] Rodriguez-Criado, Daniel, P. Bachiller, and L. J. Manso. Generation of human-

aware navigation maps using graph neural networks. In International Conference on Inno-

vative Techniques and Applications of Artificial Intelligence, pages 19–32. Springer, Cham,

2021.

This chapter investigates the generation of cost maps that represent areas of disrup-

tion to humans in indoor environments using Graph Neural Networks (GNNs), focusing on

static scenarios. Chapter 5 extends this research by introducing improvements in dataset

generation and the model architecture to accommodate dynamic environments. As exam-

ined further in this text, cost maps are essential for facilitating Human-Aware Navigation

(HAN), which requires robots to not only identify humans as dynamic entities but also con-

sider their interactions with other individuals and objects in the surrounding environment.

Companion and assistive robots are continually integrating as part of our society as we

become increasingly reliant on these technologies [64, 34, 21]. These robots need to follow

social conventions to avoid disturbing humans, to behave predictably and to increase their
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acceptability [99]. This requires robots to be aware of their surroundings, the people nearby

and their activities. In a natural environment, our paths are obstructed by other humans,

obstacles and structural elements such as walls and pillars. We can navigate through these

obstacles seamlessly however, it is a core consideration when developing the algorithms

for robots. They must rely on robust navigation models that allow them to move safely

among humans. Even if the robot does not collide or harm any person, it is essential

that humans feel safe and comfortable next to it to facilitate its acceptance in our society.

Additionally, another core consideration of these models is efficiency. If we are to continually

integrate robots into our daily life, they need to be of benefit to humans and one aspect of

this is the ability to achieve the desired goal in the least time possible. Ultimately, all of

the aforementioned considerations are taken into account in the problem of Human-Aware

Navigation (HAN). Comprehensive surveys on the extensive research conducted in this field

can be found in [99, 144, 123, 28].

Incorporating efficiency and social compliance into HAN models can prove challenging,

primarily due to the multitude of variables involved. These factors encompass not only the

environment and the initial and final positions of the robot but also the humans present in

the scene, their activities, and preferences. Consider a situation wherein the robot’s goal lies

on the opposite side of a narrow corridor, with a human situated in the middle. The robot

should be able to account for the individual’s personal space, corridor width, and walking

speed, among other factors, when planning its path. Despite substantial efforts (see Section

4.1), it is no trivial task to combine all these variables within an analytic algorithm that

produces an optimal path for the robot. Manual design is resource-intensive, difficult to

debug, and susceptible to overlooking crucial variables. Furthermore, such solutions often

disregard interactions or make simplistic assumptions that machine learning can overcome

by considering more complex factors. Converting these social variables into hard-coded

constraints leads to intricate situations, frequently resulting in what is known as the Freezing

Robot Problem (FRP) [175]. In this scenario, the planner determines that all forward paths

are unsafe, causing the robot to freeze in place (or execute short, unnecessary manoeuvres)

to avoid collisions.

Recent research directions address HAN using Deep Learning (DL) based models, which

can be trained to produce near-optimal actions for the robot during the navigation process.
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A DL approach circumvents the need for creating complex analytic models to solve the

problem. For instance, several methods within the Deep Reinforcement Learning (DRL)

paradigm have been applied to HAN. The majority of these DRL contributions offer feed-

back to the agent through a reward function [37], which is typically handcrafted and based

on the distance between the robot and people, disregarding any other social variables. Such

simplistic functions often result in suboptimal robot paths. Moreover, end-to-end RL ap-

proaches that do not explicitly search at run time lack a clear cost function that can be

visualised and analysed. This makes them less transparent and more difficult to integrate

with other algorithms, imposes hard-coded constraints (e.g., arbitrary boundaries) and re-

duces their explainability. Explainability is a crucial aspect for intelligent autonomous

agents to interact with humans effectively [103].

A specific branch of DRL, known as Inverse Reinforcement Learning (IRL) [130], aims

to teach the robot to emulate expert trajectories by learning the reward function. Although

a significant number of these approaches utilise human trajectory patterns as expert tra-

jectories, arguably, the robot should not necessarily move in the same manner as a person.

To illustrate this, consider a scenario in which the robot is large, heavy, and potentially

dangerous to people in the event of a collision. In this case, it would be undesirable for the

robot to approach a human as closely as another person might.

An alternative solution using IRL could involve generating trajectory examples by having

a person manually control the robot, typically in a simulation. However, this approach

presents certain limitations. Firstly, IRL algorithms assume that expert trajectories are

generated by an optimal policy. It is a strong assumption that humans can produce examples

of optimal policy without any errors. Furthermore, for most behaviours, there are numerous

suitable reward functions. The set of solutions often contains many degenerate solutions,

such as assigning zero rewards to all states. Although IRL constitutes a promising area of

research for HAN, it still exhibits certain limitations that require refinement, as highlighted

in this paragraph.

Another potential solution for robot navigation involves the generation of disruption

maps, which can serve as cost maps for planners such as A∗[131] or RRT[104] in subsequent

stages to determine the most optimal path. Cost maps offer broader information to the
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planner in a more efficient manner compared to querying a model to get the discomfort

score for each potential future step of the robot. Commonly employed approaches, such as

Gaussian Mixture Models (GMM) [181], attempt to predict areas of disruption by modelling

with Gaussian kernels the positions of humans. However, GMMs cannot directly incorpo-

rate additional variables beyond the position coordinates of the entities and are unable to

approximate any function with merely one kernel per person. This highlights the limitations

of handcrafted algorithms when managing multiple variables. Bearing all these factors in

mind, this chapter posits that a learning model, specifically a GNN, could encode many of

the previously mentioned social variables into cost maps, thereby assigning the navigation

algorithm the task of avoiding disruption areas. The primary challenge lies in harnessing an

appropriate dataset from which the learning algorithm can more effectively learn to model

discomfort compared to simple queries.

As discomfort is a subjective human sensation, one possible approach to generating a

dataset involves directly inquiring individuals about their feelings in the vicinity of a real

robot. The human brain implicitly accounts for all environmental factors (or the most

relevant) when generating a sense of unease. Although asking participants about their

feelings in the presence of a real robot manoeuvring within a room would be ideal, this is not

feasible in an actual study for several reasons. Firstly, it is inadvisable to recreate collision

cases (negative samples are beneficial for dataset training purposes) as this would pose a

danger to participants. Secondly, training a deep learning model necessitates the collection

of a substantial amount of data, which is a costly and time-consuming endeavour when

employing a real scenario procedure. As an alternative, experiments can be conducted in

simulated scenarios, which are then labelled by real individuals from an external perspective.

This approach was employed in the SocNav1 dataset [119], which was used to train a model

in [118] to predict discomfort scores, as described in Section 4.2.

The model outlined in [118] is capable of generating a cost map by querying every

potential position of the robot within a room. However, the inefficiency of this process

renders it unsuitable for real-world applications. The main objective of this chapter is to

propose a novel architecture for modelling robot disruption in human comfortability that

can efficiently generate two-dimensional cost maps for HAN taking into account interactions,

which is an under-researched topic in the literature. Previous studies (see section 4.1) have
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attempted to address interactions, but they either rely on arbitrary decisions or suffer from

significant efficiency limitations when applied to path planning.

This chapter presents two main contributions to the field of human-aware navigation:

a) a novel method for bootstrapping two-dimensional datasets from point-wise datasets

that capture the social context of human-robot interactions; and b) SNGNN-2D (Social

Navigation Graph Neural Network with 2-dimensional output), a hybrid architecture that

integrates GNNs and CNNs to generate two-dimensional cost maps based on the data

available to the robot. These cost maps can be used as a cost function for planning human-

aware navigation trajectories since they can be generated on-the-fly. SNGNN-2D can take

as input a graph encoding the positions of the entities in the room and semantic information

such as the kind of interactions between these entities to directly output the 2D cost map.

The underlying assumption is that SNGNN-2D has the potential to generalize over var-

ious scenarios the discomfort scores in a 2D image format, suitable for navigation purposes.

The initial hypothesis poses that these newly derived cost maps can significantly enhance

the performance of navigation algorithms HAN metrics, surpassing the capabilities of ex-

isting state-of-the-art models. The experiments conducted in section 4.4 demonstrate the

accuracy, efficiency and performance of the proposed model compared to a baseline Gaussian

Mixture Model-based (GMM) algorithm. The software for generating the two-dimensional

dataset and implementing SNGNN-2D is publicly available in an open-source repository,

along with all the data required to replicate the experiments1.

This chapter employed a base model that generates a two-dimensional dataset based on

static information from simulation frames [118]. However, this approach can also be applied

to dynamic scenarios with a different model that produces a score for each situation, as

discussed in Chapter 5. In such cases, the graph input for the GNN contains not only static

information but also dynamic information (e.g., relative motion of humans and robots).

4.1 Related Work

One of the main challenges in robot navigation is to account for the social aspects of

human-robot interaction. Previous research has mainly focused on collision avoidance with

1Source code of the project: https://github.com/gnns4hri/sngnn2d
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objects, humans and walls, treating humans as dynamic obstacles. However, Human-Aware

Navigation (HAN) goes beyond this by incorporating the social norms and expectations

that govern human behaviour and spatial relations. Two major approaches have been de-

veloped in this direction: proxemics and social force models (SFM). Proxemics draws on

psychological and sociological studies [66, 144] to define three criteria for socially accept-

able robot navigation: comfort, naturalness and sociability. Comfort involves respecting

personal and interpersonal spaces, avoiding collisions and not obstructing peoples’ paths.

Naturalness aims to emulate human motion and behaviour to reduce confusion and increase

efficiency [99]. Sociability entails following social conventions such as not interrupting peo-

ple who are engaged in conversation. SFM, on the other hand, was introduced by [69] and

extended by [176] and [137]. SFM and its variants [51] model humans as repulsive forces

that induce robots to keep a distance from them. These models have been used to simulate

pedestrian dynamics and enable robots to imitate them. However, both proxemics and SFM

have limitations as they rely on hand-crafted rules and parameters. As previously argued,

this makes them prone to errors and inconsistencies due to the high number of variables

involved in social situations [178].

This chapter and other comparable works follow the approach of creating models using

DL or a combination of handcrafted models and DL to design navigation systems. Many

of these works employ CNNs to infer environmental features from raw images of the scene.

A case of this approach is Perez-Higueras et al. [139], who merge a fully convolutional

network (FCN) that learns from expert demonstrations with an RRT* planner. Their

work, nonetheless, has some shortcomings. The dataset is scarce because it is difficult to

obtain human-generated trajectories. Additionally, it does not consider social cues such as

human-human and human-object interactions, which are vital for human-aware navigation

[123].

Deep Reinforcement Learning (DRL) has been effectively applied to navigation in crowds

among learning-based models. Chen et al. [37] present a policy that enables a robot to nav-

igate through an environment with many pedestrians while following social norms. In this

case, social conventions are encoded using a reward function based on geometric features.

Therefore, some of the limitations of hand-crafted methods discussed earlier can also affect

this approach. It is worth noting the challenge of designing reward functions that promote
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social behaviour.

Inverse Reinforcement Learning (IRL) [130] enables agents to learn from human expe-

riences. Unlike reinforcement learning, IRL infers reward functions from human demon-

stration. A recent example is Sun et al. [170], who use a combination of A* and IRL for

social navigation using only the robot’s sensors as input. IRL has also been employed to

generate social cost maps for robot navigation in [179]. However, IRL-based models im-

plicitly learn the relations and interactions between humans and human-object, which can

result in poor performance in dense crowds. To address this issue, [36] and [29] propose the

combination of GNNs and reinforcement learning for crowd navigation. They present an

end-to-end approach where the model directly produces the robot control signals. Thanks

to the use of GNNs, the dynamics of crowds are better represented and captured. Never-

theless, the reward function is hand-crafted and only considers the distance to the nearest

human. Moreover, these works do not account for explicit interactions among people.

RL or IRL end-to-end approach allows for directly producing the final signals controlling

the robot. Any information about the environment that may affect the control of the robot

has to be initially considered as there is no possibility to include that information at a later

stage in end-to-end approaches. This means that not only information about the people

and their relations with the environment is important, but also other factors such as the

size and shape of the objects. An alternative is to build a cost map that can be used by

a planner to generate a minimum cost path. Cost maps can combine information from

different sources and are more easily explainable than final control signals which, may be

helpful during the development of the system.

The model presented in this chapter, SNGNN-2D, is a DL-based approach that generates

cost maps for human-aware navigation. It overcomes some of the aforementioned limitations

related to the ability to incorporate symbolic information that cannot be naturally repre-

sented using a single vector or grid, such as interactions. Specifically, SNGNN-2D combines

GNNs and CNNs to generate a cost map from a graph representing the different elements

of a room as well as the relationships between them. Unlike pure CNN models, which are

not designed to capture the relational information among the elements in the scene [15],

SNGNN-2D can integrate both geometrical and relational data, which are crucial in HAN.
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Moreover, SNGNN-2D is not dependent on specific features of the environment (e.g., the

textures of the floor and walls) that would prevent obtaining a general model that could

be applicable in other scenarios. This advantage is demonstrated empirically in Chapter

5, where the second version of SNGNN-2D results are compared with those obtained by a

representative CNN-based model and show that the CNN model can not extrapolate to the

mentioned changes in the scenario. The combination of GNN and CNN layers provides a

general solution to the generation of maps for social navigation that integrates both geomet-

rical and relational data. SNGNN-2D is trained using a map-like 2D dataset bootstrapped

from a single-point model developed in a previous work [119]. In such a model (SNGNN ),

for any given graph describing a scenario, the network generates a single scalar estimation

of how disruptive the robot is overall for the people in the scenario. To generate a cost

map from these single scores, it is necessary to query the model for each of the cells in

the cost map. The time required for generating the cost map this way makes this solution

unsuitable for real-time applications. SNGNN-2D uses a generated dataset that contains

scenario-maps tuples which are computed by sampling the output of SNGNN for every

robot position (see Section 4.3.1).

4.1.1 Graph Neural Networks Applied to Human-Aware Navigation

A number of recent machine learning-based approaches leveraging structured data for social

navigation have been recently published. A GNN model integrated with a Deep Reinforce-

ment Learning (DRL) algorithm based on Monte Carlo Tree Search was presented in [29].

It utilises a graph-based model to detect the implicit relations between the humans in a

room. Interactions are useful to predict future human trajectories. For instance, interacting

pedestrians generally behave differently than those who do not interact. This phenomenon

is also exploited in [35], where a GCN-based DRL leverages the gaze of humans to estimate

interactions and predict their trajectories. These works consider human-robot and human-

human relations but disregard interactions with objects or obstacles that could be exploited.

Moreover, the DRL algorithms in [29] and [35] use a simple handcrafted reward function

based on the minimum distance between the robot and the humans that disregards any

other social information such as how densely populated the room is (distance restrictions

are usually eased in crowded spaces). Due to the variety of different scenarios and factors to

consider, handcrafting a reward function that complies with social rules seems prohibitively
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complex and time-consuming.

A model combining a CNN and a GNN to learn an action policy for multi-robot nav-

igation is presented in [110]. The CNN extracts features from local observations of the

environment, and the action policy for the robot swarm is computed from those features

using GNN. Although safety and collision avoidance are taken into account, the approach

only considers humans as obstacles.

Other works use GNNs for reasoning and perception in a domain related to social nav-

igation. A significant amount of them directs their focus to the prediction of pedestrians’

paths [183], [77] or [65]. A particularly noteworthy contribution by Agrawal et al. [5] uses

knowledge graphs and machine learning to estimate the location of objects in a room. The

use of GNNs for these tasks allows extracting additional information of the environment

and from the crowd such as relations between people and between humans and objects.

However, none of the previous works tackles the problem of modelling discomfort.

4.2 Model to Predict Discomfort Scores

This section summarises the work conducted in [118], which presents a GNN model, termed

SNGNN, designed to predict a general discomfort score for individuals in a room containing

a robot and static objects. The input of this model is a graph containing metric and

semantic information of the scenario. While not a direct contribution to this thesis, this

work lays the foundation for a series of studies on HAN developed herein.

SNGNN [118] was trained using the SocNav1 dataset [119]. This dataset comprises

single-frame scenarios depicting a room populated with humans, objects, and a robot, as

illustrated in Figure 4.1. Blue ellipses represent humans, green rectangles objects, and the

red square denotes the robot. Two types of interactions are represented by black lines:

human-human interactions (see Figure 4.1a) and human-object interactions (see Figure

4.1b).

Three participants involved in the creation of the dataset assigned to each scenario a

score between 0 and 100. A score close to 100 suggests that the robot is not causing any

inconvenience to the individuals in the room, while a score close to 0 indicates an unwelcome
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(a) Human-humans interaction. (b) Human-object interactions.

Figure 4.1: Scenario representation from the SocNav1 dataset [119]. The 2D images depict blue ellipses
for humans, green squares for objects, and a red square for the robot. Human-human and human-object
interactions are represented by two parallel lines between the entities. The slider on the right is used to
provide the discomfort score caused by the robot in the scenario.

situation or a collision with a human. The slider next to the scenario in Figure 4.1 was

used to determine the score when acquiring the dataset. To ensure the consistency of the

three users labeling, both inter-rater and intra-rater agreement were quantitatively assessed

using the linearly weighted kappa coefficient [41].

The creation of SocNav1 was motivated by two key factors. Firstly, considering the

current technology readiness level, the expected behavior from robots may differ from what

is anticipated from interactions among humans. This divergence highlights the necessity to

understand and align robot behavior with human expectations. Secondly, SocNav1 aims to

evaluate the capacity of robots to gauge the discomfort their presence might evoke among

humans. This ability holds significance for robot navigation systems as it aids in estimating

path costs based on human comfort levels.

Prior to training the model, the dataset information must be converted into a graph

that the GNN can process. In SNGNN, graphs resemble the one shown in Figure 4.2. Each

entity in the room is represented by a node in the graph, including wall segments and a room

node. The robot serves as a global node, connecting to other nodes and gathering global

information. Interactions between two entities are represented by linking their respective

nodes with an edge in the graph. Node features encompass a one-hot encoding vector that

identifies the type of entity it represents, along with metric features such as the entity’s
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coordinates within the room.

Figure 4.2: Graphs employed in [118] to encode the information in each scenario.

Moreover, beyond effectively generalizing over the discomfort scores provided in Soc-

Nav1, SNGNN also considers the interactions between entities. For example, if the robot

is positioned between two individuals engaged in conversation, the model’s predicted score

appropriately reflects this scenario by yielding a lower score, acknowledging the presence of

the ongoing interaction. This nuanced understanding of social dynamics represents a bias

successfully extracted by the model from the data labeled by subjects in SocNav1.

However, the model does possess some notable limitations. One such limitation arises

from the training data, which only offers single-frame scenarios with static elements, while in

real life, velocities are crucial for the network to estimate future entity positions. Another

constraint is the absence of semantic information in the data. It would be beneficial to

have details such as the type of interaction (e.g., talking, shaking hands, walking together),

the scenario context (e.g., office, hospital, hallway), and the timing of collisions between

entities, to name a few examples. This information could be conveniently incorporated into

either edge features (for interaction type) or node features (for scenario type). These two

limitations will be addressed through the development of a new dataset, as introduced in

Chapter 5.

A further significant limitation, addressed in this chapter, is the limited utility of a

single score per scenario for navigation algorithms. As previously mentioned, SNGNN can

be employed to produce two-dimensional cost maps by querying the network for every
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potential position of the robot within the room. This method generates discomfort scores,

assigning a value to each pixel in the cost map (refer to Section 4.3.1). However, the primary

issue with creating maps in this manner is the time it consumes. Given that a network query

is required for each pixel in the map, the entire procedure takes an average of 140 seconds

in the setup utilised in [118], thus preventing the system from being used in real time.

This time constraint served to motivate the subsequent work presented in this chapter.

The following text outlines the process of utilising SNGNN to bootstrap a new dataset

containing 2D images, which will be employed for training a model capable of generating

2D discomfort maps. As previously stated, these cost maps can be used by a planner to

provide safe paths for the robot whilst adhering to the social conventions within the room.

4.3 Generation of Disruption Maps from Static Data

This section presents the main technological contributions of the chapter proposal: a) the

technique employed to generate the dataset; b) the scenario-to-graph transformation; and

c) the architecture of the proposed SNGNN-2D model.

4.3.1 2D Dataset Generation

Acquiring two-dimensional cost or disruption maps to create datasets for learning introduces

several challenges. One major issue is that requesting individuals to provide a cost map

rather than a single score per scenario would be more time-consuming. Additionally, the

accuracy of the responses will depend on the subjects’ ability to graphically represent their

preferences, which may vary. Furthermore, ensuring the subjects’ inclination and motivation

to remain engaged in the task is another challenge that needs to be considered.

From a DL perspective, when considering approximately equal time commitments and

efforts for generating responses, providing a single scalar for each scenario would result in

responses for a greater number of scenarios. This, in turn, would arguably increase the

variability in the input scenarios and make the model less susceptible to overfitting.

A dataset that includes scalars as output data cannot be directly used to train a model

that provides a two-dimensional output. Therefore, in this case, we utilized a model that
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vSNGNN

(a) SNGNN can be used to estimate the disruption caused by the robot given a particular scenario. In the scenario
on the left, humans are shown as ellipses, objects as squares and interactions as parallel lines. The value V represents
the response of SNGNN to the presence of the robot.
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(b) The expected 2D outputs are generated by performing multiple queries to SNGNN, shifting the scenario around
the robot.

Figure 4.3: The process used to bootstrap the two-dimensional dataset: a) how a single SNGNN query
works; b) how to generate two-dimensional outputs.

provides single value estimations (SNGNN [118]) and sampled its output by shifting the

robot’s position to bootstrap a two-dimensional dataset. The process, as depicted in Fig-

ure 4.3, is as follows: given a scenario and a particular position of the robot, SNGNN

estimates a score of the disruption caused by the robot to the humans in the scenario. To

generate a map from this model, multiple queries are made to SNGNN for each scenario,

moving the robot to each potential position. This process generates a two-dimensional

output that represents a cost map per scenario. Ultimately, the dataset comprises pairs

of data: graphs containing scenario information (outlined in the subsequent section) serv-

ing as inputs for training the model, and the corresponding anticipated outputs, i.e., the

bootstrapped 2D images representing the cost maps.
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For each scenario in the bootstrapped dataset, a matrix of 73 × 73 samples is gener-

ated. A total of 37, 131 scenarios were randomly generated following the same strategy as

SocNav1 [119]. The dataset split for training, development, and testing includes 31, 191,

2, 970, and 2, 970 scenarios, respectively. Given the relatively high number of samples and

the randomness of the selection process, each set in this split can be considered sufficiently

representative of the entire set.

4.3.2 Scenario to Graph Translation

In order to use GNNs, it is essential to convert the input data, which is not presented in the

form of a graph, into a graph-like structure. In the approach presented here, the process

follows similar steps as in [118] (see Section4.2), with the exception that an additional grid

of 18 × 18 nodes is added, and its values are passed to the CNN layers of the architecture

and decoded into the final output. This grid of nodes and the architecture designed in this

chapter stand as a significant technological contribution of the thesis, enabling the efficient

transformation of graphs into images.

The first part of the graph, which coincides with [118], is the scenario graph that rep-

resents the entities in the room and their relations using a node per entity, such as room,

humans, walls, and objects. The walls are divided into segments, creating a node for each of

these segments. A global room node connects to every other node in the graph to facilitate

the use of global information in the room using fewer GNN layers. This is a crucial aspect

to consider as GNNs tend to suffer from poor performance with a large number of layers,

as discussed in Chapter 3. The human-to-human and human-to-object interactions, if they

exist, are represented as edges among the respective nodes. The scenario graph can be seen

in the top half of Figure 4.4.

The mentioned grid is a lattice of interconnected nodes, structured to represent the area

of the room surrounding the robot by associating them to 2D coordinates. The connection

of the grid nodes is represented in Figure 4.4. The number of nodes of this grid and the area

they cover are hyperparameters that can be tuned to reach a trade-off between performance,

computation time, and area coverage. The x, y coordinates of a grid node in row i and

column j from the robot’s perspective are computed as in equation 4.1, where N is the
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Figure 4.4: Graphical representation of the final graph for the scenario depicted in Fig. 4.3a. The nodes for
the room, humans, objects and walls are drawn within the square at the top of the figure. The node for the
room is shown in red (in the centre), blue nodes represent humans, green nodes represent objects and wall
nodes are drawn in dark grey. Grid nodes (in lighter grey) are connected among them and form a squared
mesh area. The nodes in the scenario graph connect to the closest node of the grid (see dashed arrows).
All nodes in the graph are bidirectionally connected to the room node but are not drawn to facilitate the
visualisation. Edge types are not displayed to avoid clutter.

width and height of the lattice and W is the side of the squared area covered by the grid.

x =
W (⌊(N − 1)/2⌋ − i)

N − 1

y =
W (j − ⌊(N − 1)/2⌋)

N − 1

(4.1)

In the final graph, the scenario graph and the grid are combined using additional edges

to connect the entities from the scenario graph to the closest nodes in the grid. This results

in a single graph that is used as input to the model. Fig. 4.4 provides a representation of

what the final graph for the scenario depicted in Fig. 4.3a looks like.

Each node in the graph is assigned a feature vector with 21 dimensions. The feature

vector h
(0)
i for the i-th node is created by concatenating a one-hot encoding and type-specific

metric information, as shown in equation 4.2. Here, ti represents a one-hot encoding to

distinguish between the five types of nodes: human, object, room, wall, and grid.

h
(0)
i = (ti ∥ pi ∥ oi ∥ ri ∥ wi ∥ gi) (4.2)
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The sub-vectors pi, oi, and wi store the metric information for human, object, and wall

nodes, respectively. These sub-vectors are four-dimensional and include the 2D coordinates

of the entity and the cosine and sine of its orientation for normalisation purposes. Addi-

tionally, there are sub-vectors ri and gi that contain metric properties for room and grid

nodes, respectively. In particular, the room feature vectors store the number of humans

in the room, whereas the grid vector stores the 2D coordinates of the corresponding node.

In cases where the metric vectors do not correspond to the type of node, the sub-vectors

are filled with zeros. Although it is possible to merge the metric features of different entity

types into a single metric vector, we chose to keep them separated to help the neural net-

work combine the information as required to obtain the final output. It’s essential to clarify

that the assumption within this context is that the information required to construct the

graphs is known. In real scenarios, other models, such as the one developed in Chapter

6, are necessary for detecting people’s positions and their interactions before employing

SNGNN-2D.

As seen in the next section, the GNN layer model that yielded the most promising results

in this work is RGNN, which allows for the utilisation of labelled edges as discussed in Sec-

tion 3.2. This entails that each edge is associated with a specific edge type that corresponds

to the nodes it links and their respective direction. For example, a connection between a

human node and an object node differs from that of an object-to-human connection. This

labelling scheme also extends to the edges connecting the scenario graph and the grid graph.

However, the edges in the grid are labelled according to the direction of the connection to

account for their relative positions, namely, up, down, left, and right.

4.3.3 Architecture Description

The architecture that yielded the best results after hyperparameter tuning is illustrated

in Fig.4.5, and it consists of three segments. The first segment comprises a sequence of 8

Relational Graph Convolutional Network layers (RGCN), with the number and size of these

layers determined via hyperparameter tuning (as described in section 4.4.1). The output

of this segment is a graph that preserves the same nodes and structure as the input graph,

but with feature vectors that have been reduced from 21 to 7 dimensions. In the second

segment, nodes that are not part of the grid are removed to connect the output of the last
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Figure 4.5: Architecture of the SNGNN-2D model.

GNN layer to the input of the first CNN layer. Specifically, a grid comprising 18×18 nodes

is employed in the model, which generates an 18× 18× 7 tensor that is utilized as input for

the third and final segment of the architecture. This third segment consists of a sequence of

two transposed convolutional layers that generate the final 73 × 73 output that is observed

in the bootstrapped dataset. The combination of RGCN and CNN layers, linked through a

node filter layer that generates cost maps, is the second contribution of this chapter.

4.4 Experiments

To validate the proposal, this section includes experimental results regarding the accuracy

of the proposed model, its time performance and a comparison to other approaches.

4.4.1 Training Results

The model was trained as a regression model using MSE (Mean Square Error) as the

loss function where the expected output is the bootstrapped cost maps. After running 150

training tasks to optimise the hyperparameters of the architecture using random search, the

best model achieved an MSE of 0.000710.000710.00071, 0.001120.001120.00112 and 0.001140.001140.00114 for the training, development

and test splits of the bootstrapped dataset, respectively. The model reached the best

performance on the development dataset after 35 epochs. The 8 R-GCN layers transform

the input feature vectors from 21 into 7 dimensions. The 2 transposed CNN layers of the

model with the lowest test MSE have kernel sizes of 5 and 3, with a stride of 2 and a padding

of 1. The non-linearity of the best-performing model was ELU. Figure 4.6 depicts three

scenarios and the corresponding output of the SNGNN (sampled) and SNGNN-2D models.
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Figure 4.6: Results obtained for 3 different scenarios. On the left, are representations of the rooms. The
central images correspond to the bootstrapped labels used as ground truth. On the right, is the output
generated by SNGNN-2D. Ideally, the second and third columns should be equal.

4.4.2 Comparison against the Reference Dataset (SocNav1)

Given that the bootstrapped dataset does not contain information gathered directly from

users but from the output of a zero-dimensional GNN model (one single value as output),

comparing SNGNN-2D against the test data of the bootstrapped dataset could lead to

unrealistic results. To provide a realistic evaluation of our model with the previous zero-

dimensional model, the original SocNav1 test dataset was used.

Considering that SNGNN-2D delivers a complete image while SocNav1 offers a singular

score, this section computes the MSE using only the central pixel of the image., which

corresponds to the robot’s position. Based on user-assessed data only, the MSE of SNGNN-
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2D computed for the SocNav1 test set was 0.01873. The SNGNN version used to generate

the bootstrapped dataset performed slightly better than the one reported in the original

paper, with an MSE on the SocNav1 test set of 0.0198. SNGNN-2D not only achieves better

time efficiency but also achieves slightly better accuracy on the test set when compared to

SNGNN. This accuracy is in turn noticeably superior to the one obtained by the non-ML

based approach in [181] (0.12965 as reported in [118]), which is used as a reference method

in section 4.4.4 to evaluate navigation results. This indicates that the cost maps generated

using SNGNN-2D reflect more precisely how people would feel in different situations.

4.4.3 Real-Time Evaluation

The time required by SNGNN to generate a 73 × 73 frame in a 6th generation Intel i7

computer with a Geforce GTX 950M is 37.55 seconds (it requires 5329 SNGNN queries).

The time required by SNGNN-2D to generate a similar output is 0.0450.0450.045 seconds, with just

one query (three orders of magnitude difference). The substantially decreased generation

time of SNGNN-2D enables its application in real-time scenarios, such as the experiment

detailed in the following section.

4.4.4 Comparison against GMM-Based Methods

This section presents a comparative evaluation of the effectiveness of SNGNN-2D, through

simulated navigation results, with the human-aware navigation approach proposed in [181]

that relies on Gaussian Mixture Models (GMMs).

The experiments were conducted under simulated environments using the SONATA [11]

toolkit. This toolkit is built on top of PyRep [83] designed to simulate human-populated

navigation scenarios and to generate datasets. SONATA provides an API to generate ran-

dom scenarios including humans, objects, interactions, the robot and its goals. The walls

delimiting a room are also randomly generated considering rectangular and L-shaped rooms.

SONATA also provides real-time access to information on the elements in the environment

and their properties. This information is utilised by the tested methods to create a cost

map that is integrated into a control system responsible for planning the robot’s minimum

cost path using A∗ and guiding the robot towards its goal. In Chapter 5, more information

about this tool will be provided as it is used to generate the training dataset.
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The simulation environment provides all the required information for creating the graphs

in the navigation scenario. However, in a real-world setting, the robot would operate in a

sensorised environment where data from various sensors (such as RGBD cameras, micro-

phones, and lasers) would be preprocessed by other models to obtain the necessary global

knowledge for graph generation, including the position of entities, relations, and global in-

formation. For instance, a model like the 3D pose estimator described in Chapter 6 could

be utilised to obtain human positions in a room as demonstrated in the experimentation

section of Chapter 5.

(a) Example scenario A (b) Example scenario B (c) Example scenario C

Figure 4.7: Examples for each of the three scenarios used for the experiments. Scenario A (Fig. 4.7a) has
2 standing humans and 1 walking human, scenario B (Fig. 4.7b) with 4 standing humans and 2 walking
humans and scenario C (Fig. 4.7a) with 5 standing humans and 3 walking humans. The blue lines on the
floor represent interactions and the green circle is the robot’s goal.

According to the number of humans in the room, three different types of scenarios were

tested: rooms with 2 standing humans and 1 walking human (SA), rooms with 4 standing

humans and 2 walking humans (SB) and rooms with 5 standing humans and 3 walking

humans (SC). All the scenarios included a randomly generated number of objects, room

shape and wall length. The number of interactions between humans or humans and objects

was also randomly generated. Figure 4.7 depicts example frames for each of the three

scenarios. For each type of scenario, each method was executed in 50 different simulations

to cover a wide range of situations. The results of applying each method were evaluated

using identical metrics as outlined in [181] to ensure a comprehensive comparative analysis:

• τττ : navigation time

• dtdtdt: travelled distance

• CHCCHCCHC: cumulative heading changes
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• dmindmindmin: minimum distance to a human

• siisiisii: number of intrusions into the intimate space of humans (closer than 0.450.450.45m)

• sipsipsip: number of intrusions into the personal space of humans (closer than 1.21.21.2m)

• sirsirsir: number of intrusions into an interaction (closer than 0.50.50.5m)

Table 4.1 shows the mean and the standard deviation of these metrics using the GMM-

based method and SNGNN-2D, considering separately each group of scenarios. The best

value of every metric for each type of scenario has been highlighted in bold. For the first

two types of scenarios (SA and SB) the mean values of most of the metrics can be consid-

ered comparable, although SNGNN-2D produces better results according to the travelled

distance (dt) and the cumulative heading changes (CHC). More variability is observed

in the GMM-based approach as can be seen by the standard deviation of each parameter.

In addition, for complex scenarios (SC) greater differences can be observed between the

two methods, showing that the proposed model behaves in a more socially acceptable way

in crowded environments. Another important result is that the time required to generate

a cost map using GMM substantially increases with the number of people and relations,

whereas the impact of the complexity of the scenario in the proposed model is negligible.

GMM SNGNN-2D

SA SB SC SA SB SC

τ(s) 12.16±7.0 13.12±
6.7

18.9±10.2 12.11±
4.7

13.75±5.2 15.99±
6.2

dt(m) 4.92 ± 2.5 4.88 ± 2.8 5.7 ± 3.1 4.14± 1.2 4.53± 2.2 4.67± 1.9
CHC(rads) 4.36 ± 2.9 4.44 ± 2.1 5.99 ± 3.3 2.87± 1.4 3.18± 1.3 3.64± 1.6
dmin(m) 1.53± 0.7 1.24± 0.5 0.98 ± 0.4 1.48 ± 0.7 1.12 ± 0.5 1.01± 0.4
sii(%) 0 ± 0 0± 0 0.2 ± 0.91 0 ± 0 0.11±0.73 0± 0
sip(%) 12.0±27.2 18.1±

27.2
30.2±

32.4
11.2±

16.5
22.6±25.8 30.3±25.4

sir(%) 0.37 ± 1.6 0.18± 0.9 1.66 ± 5.9 0± 0 0.39 ± 1.7 0.55± 2.4

Table 4.1: Mean and Standard Deviation (M ± SD) of the navigation metrics for each group of scenarios
using GMM and SNGNN-2D.
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4.5 Conclusions

As shown in section 4.4, the combination of arbitrarily structured and grid nodes in a two-

staged architecture integrating GNN and CNN layers achieved competitive results consid-

ering both MSE and the properties measured in the navigation simulations. The reduction

in time from an average of 37.55 seconds to 0.045 seconds in comparison to SNGNN is also

remarkable, allowing the model to be used in real-time applications.

SNGNN-2D has a significant limitation, which is the absence of dynamic properties

such as movement in the input data. In Chapter 5, this limitation will be addressed by

creating a dataset that takes into account the velocity of the robot and humans, which is

not considered in the current dataset (SocNav1 ) used to bootstrap the 2D dataset.

In this chapter, navigation results comparing SNGNN-2D with a Gaussian Mixture

Model are presented. The results show that SNGNN-2D outperforms the GMM, partic-

ularly when the number of people in the scenario increases. In Chapter 5, a comparison

against a pure CNN model will be conducted, although this comparison may be considered

unbalanced for several reasons. Firstly, the CNN is not able to encode explicit relations

like the GNN. Additionally, the GNN is provided with explicit information extracted from

other sources, such as the position of entities in the room, while the CNN would have to

implicitly extract this information from the raw data. Finally, CNN’s training would be

scenario-specific since it depends on the position of the cameras and the textures of the

environment. On the other hand, the GNN facilitates working with structured data and

higher lever information not relying on visual information such as textures. This allows the

model to be deployed in environments with similar sensors. All these limitations will be

highlighted in the comparison experiment in Chapter 5.

It is worth noting that the method followed in this chapter can be used to generate

other kinds of maps with completely unrelated applications by applying the process to

other datasets or even realistic-looking images as demonstrated in Chapter 7.
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Chapter 5

Generation of Dynamic Cost Maps

for Human-Aware Navigation

Part of the work presented in this chapter has been adapted from the following publications:

[10] P. Bachiller, Rodriguez-Criado, Daniel, R. R. Jorvekar, P. Bustos, D. R. Faria, and

L. J. Manso. A graph neural network to model disruption in human-aware robot navigation.

Multimedia Tools and Applications, pages 1–19, 2021.

[11] R. Baghel, A. Kapoor, P. Bachiller, R. R. Jorvekar, Rodriguez-Criado, Daniel, and

L. J. Manso. A toolkit to generate social navigation datasets. In Workshop of Physical

Agents, pages 180–193. Springer, 2020.

Part of the work in this chapter is also planned for submission to the Journal of Ambient

Intelligence and Humanized Computing under the title “Generation of Dynamic Human-

aware Navigation Maps using Graph Neural Networks”.

Despite the remarkable improvement in speed when using a GNN-CNN combination

for cost map generation, the model in the previous chapter SNGNN-2D presents several

limitations. On the one hand, some limitations stem from the dataset used for training.

The scenarios in SocNav1 [119] only provide static information lacking any data on veloc-

ities, which are highly informative for navigation and path prediction models. Moreover,
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the interactions between entities indicate connection but do not provide any semantic in-

formation (e.g., two humans talking, humans walking together, humans shaking hands).

Semantic information enriches the input and therefore the features of the GNN, potentially

yielding more accurate results. On the other hand, limitations exist in the model itself.

SNGNN and SNGNN-2D can only process static data and therefore they provide a score

for a single frame. Both the pipeline and the generation of graphs have to be modified to

take into account the dynamic of the environment. Addressing this limitations is the main

motivation of the work carried out in this chapter.

In the preceding chapter, we examined two of the three most salient advantages of

GNNs in the HAN domain: Firstly, GNNs permit a flexible number of input features,

which proves practical in scenarios where there is a variable number of entities, such as

humans and objects. Secondly, as GNNs can accept a graph as input, they capitalise on

the relationships between entities, which are represented as edges connecting nodes in the

graph. This explicit consideration of interactions results in the model attaining a more

comprehensive understanding of the human-human and human-object interactions within

the room. In this chapter, among other contributions, we explore a third advantage, which is

that the direct utilisation of structured data introduces an additional degree of abstraction.

This supplementary abstraction layer renders the system scenario-agnostic, meaning that

the model operates with pre-processed raw data, independent of the particularities of the

scenario. Owing to the abstraction power of GNNs, better performance across different

scenarios is expected (enhanced generalisation) compared to an end-to-end approach. It is

worthwhile to conduct a comparison experiment to address this hypothesis.

This chapter aims to address the previously mentioned limitations through three pri-

mary contributions. The first contribution is the development of a novel dataset, the

SocNav2 dataset, comprising brief videos of a 3D environment that integrates the veloci-

ties of entities within the room. In addition to the dynamic context, SocNav2 offers several

improvements over its predecessor, such as an extended scoring system that accounts for

robot movements and objectives, as well as more realistic scenarios and interactions (refer

to Section 5.2). The second contribution encloses the introduction of an innovative model,

SNGNNv2 (Section 5.4), for generating discomfort scores from dynamic scenarios, serving

as the second version of the static model discussed in Chapter 4 (SNGNN [118]). SNGNNv2
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adopts a similar approach to its predecessor but with notable enhancements. It considers

two distinct scores to assess different facets of social navigation, and the model is trained

utilising dynamic scenes in which humans and the robot are in motion, addressing the pri-

mary limitation of SNGNN. For the last contribution SNGNNv2 is employed similarly to

its predecessor to bootstrap a new dataset of images, used for training a new model that

generates disruption maps, referred to as SNGNN-2Dv2 (Section 5.5), which constitutes

the second version of SNGNN-2D. Both these new models rely on processing a graph con-

structed from information preprocessed by additional models using information from the

sensors in the environment.

The primary motivation behind this new dataset and models is the hypothesis that incor-

porating environmental dynamics will significantly enhance performance in social metrics

for Human-Aware Navigation (HAN), as demonstrated in the experiments of this chapter.

Furthermore, it is worth noting that SNGNNv2 and SNGNN-2Dv2 have distinct primary

objectives. On the one hand, SNGNNv2 is designed to evaluate social or human-aware

navigation systems involving robots, proposing an innovative quantitative metric derived

from qualitative considerations not previously employed in the literature. On the other

hand, SNGNN-2Dv2 generates cost maps that can be directly utilised for HAN algorithms.

While the goals of both models differ considerably, they are included within the same chap-

ter because the 2D version builds upon the discomfort score predictor, and both models

focus on dynamic scenarios as opposed to the model created in Chapter 4.

The additional contributions of this chapter encompass a new method of creating

graphs to consider the dynamics of the environments (Section 5.3) and two new experiments.

The first experiment (Section 5.5.4) compares SNGNN-2Dv2 with a CNN-based method

for the same task of generating cost maps. This comparison highlights some of the CNN

limitations mentioned, for instance, the CNN-based model performs poorly in different

rooms with varying floor and wall patterns, while the GNN remains unaffected (appearance

invariant). The second experiment (Section 5.5.4) tests the cost map generation model with

a real robot in an actual environment. The map is utilised by the robot’s navigation planner

to follow a safe path adhering to social conventions.
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5.1 Related Work

This section expands upon the literature review in Section 4.1, focusing on approaches for

addressing HAN in dynamic scenarios through the use of cost maps. Recent surveys on HAN

highlight the advantages of employing maps for robotic navigation [123, 28], particularly in

the context of SLAM (Simultaneous Localization and Mapping) systems, which are widely

implemented in contemporary commercial robots.

The review presented in [28] categorises cost maps used in HAN into three types: met-

ric, semantic, and social maps. The authors acknowledge that distinctions among these

categories are often ambiguous within the literature. Nevertheless, a more pronounced dis-

tinction exists between metric maps and the other two types. Metric maps focus exclusively

on the geometric aspects of the environment, whereas semantic and social maps introduce

semantic information, providing an additional layer of abstraction. Besides the advantages

discussed in earlier chapters, this extra layer of abstraction also facilitates the transfer from

simulation to real-world scenarios [123]. The experiment in Section 5.5.4 demonstrates the

performance of SNGNN-2Dv2 (trained using simulated data) within a real-world environ-

ment, employing an actual robot.

Numerous studies have explored the generation of cost maps that take into account

the velocities and dynamics of environments for human-aware navigation. For instance,

works such as [45, 93] extend the application of Gaussian Mixture Models (GMMs) to

model areas of disruption in dynamic environments, considering the velocities of pedestrians.

However, algorithms that rely on handcrafted social constraints, such as these, encounter

the limitations outlined in Chapter 4.

Laible et al. [101] put forward a method for semantic robot localisation using spatio-

temporal classification. The process begins with spatial classification, wherein the input is

partitioned into a grid, with each grid cell assigned a label such as asphalt, cobblestones,

grass, or gravel. Following this, the method’s temporal aspect utilises visual odometry

to merge the derived maps. The labelled maps are subsequently projected onto the grid,

and a probabilistic criterion refines the grid labels by considering neighbouring cells. It

is important to note that these maps treat people as mere dynamic obstacles, without

incorporating relational or other semantic information. Furthermore, occupancy grids are
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known to have inherent limitations, including resolution constraints, memory consumption,

and computational complexity.

In [49], the authors first model personal space and group interaction as social costs

based on pedestrian perception, subsequently generating multi-layer dynamic cost maps.

These maps incorporate social costs at various timesteps, derived from pedestrian trajectory

predictions, which provide social constraints for global path planning. The global path

planner then searches for the optimal state using a heuristic cost function based on the

multi-layer dynamic cost maps. Despite its merits, this work models disruption areas with

analytic functions, which are more susceptible to errors and inconsistencies and a DL-based

approach. Nevertheless, the concept of multi-layer cost maps proves valuable and has been

implemented in the experiments of this chapter. In the real-world scenario demonstrated

in Section 5.5.4, the final cost map employed by the robot is a superposition of the robot

map (see Appendix A) and the discomfort map generated by SNGNN2d-v2.

Alternative approaches for generating cost maps that consider environmental dynamics

utilise graph structures. Hemachandra et al. [70] propose a semantic framework that

models the environment based on natural language descriptions and scene classifications.

The topology of the resulting graph contains nodes representing the robot’s trajectory, while

the edges indicate connectivity between the nodes. The temporal component is involved in

updating the graph topology by taking into account previous metric exteroceptive sensor

data, scene appearance observations, and natural language descriptions. Similarly, [94]

capitalises on the temporal component, introducing a time-evolving navigation graph that

delivers a semantic topology of the explored area and the connectivity among detected

places in terms of inter-place transition probability.

Both aforementioned works demonstrate the advantages of employing graphs for incor-

porating semantic information into the model and explicitly accounting for element inter-

actions. However, it is important to note that these studies do not specifically address the

HAN problem, as they do not consider humans as entities in their navigation models.

Finally, it is worth mentioning that cost maps can also be created from visual fea-

tures using end-to-end deep learning models for image generation. Section 2.4.2 offers a
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comprehensive overview of the most prominent technologies, including VAEs, GANs, and

diffusion/denoising models. As previously mentioned, the main limitations of these mod-

els are their adaptability to new scenarios and poor performance in modelling interactions

between entities in the environment. Owing to GANs’ ability to generate high-resolution

images relatively quickly, a state-of-the-art GAN model is selected for comparison with

SNGNN-2Dv2. Specifically, the model developed in [81], also known as pix2pix, is chosen

for this purpose.

5.2 SocNav2 Dataset

SocNav1 (Section 4.2) was developed to learn and benchmark disruption estimation func-

tions for social navigation. SocNav2, presented in this chapter, shares the same objective

as its predecessor; however, it incorporates the velocity and trajectory of the robot and

surrounding humans among other advantages. Like SocNav1, SocNav2 contains scenarios

with a robot in a room, alongside various objects and individuals who may potentially in-

teract with other objects or people. In SocNav2, the room also includes a landmark that

constitutes a goal position to be reached by the robot. Any existing human-human or

human-object interactions are noted in the scenarios. However, unlike in SocNav1, these

notes contain semantic information indicating the nature of the interaction and the interac-

tions are not limited to entities facing each other. For instance, there is a type of interaction

of two or more humans walking together.

SocNav2 provides 13406 scored samples of dynamic scene sequences. Each sample con-

sists of 35 “snapshots” of a scene of a room with a moving robot, objects and potentially

moving humans, taken during a time interval of 4 seconds. Each SocNav2 sample includes

scores for two social navigation-related statements: “the robot does not cause any distur-

bance to the humans in the room” (Q1 ) and “the robot is moving towards the goal efficiently,

not causing any disturbance to the humans in the room” (Q2 ). The scores range from 0 to

100, considering the following reference values:

• 0: Unacceptable

• 20: Undesirable
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• 40: Acceptable

• 60: Good

• 80: Very good

• 100: Perfect

The scenarios compiled in SocNav2 have been generated using SONATA [11]. SONATA

is a toolkit built on top of PyRep [83] and CoppeliaSim [149], designed to simulate human-

populated navigation scenarios and generate datasets. It offers an API to generate random

scenarios, incorporating humans, objects, interactions, the robot, and its goals. The walls

delineating a room are also randomly generated, considering both rectangular and L-shaped

rooms. While SONATA exclusively provides simulated scenarios, the use of synthetic data is

crucial in the context of social navigation. This is primarily because generating a comparable

number of situations using only real-world data would be infeasible. Furthermore, scenarios

that jeopardise human safety, such as human-robot collisions, cannot be ethically performed

in real-world settings.

The robot’s movements were generated using two distinct strategies to enhance the di-

versity of its behaviour. The first strategy employs a machine learning model (see [11]) that

outputs the robot’s control actions based on a graph representation of the scenario. This

model was trained using supervised learning (i.e., containing only examples of appropriate

behaviours), which results in unexpected behaviours in situations that do not typically oc-

cur when controlled by humans. However, for the creation of SocNav2, these behaviours

facilitate the generation of a broad range of favourable and unfavourable situations that

would not have emerged from random actions. In addition to the samples where the robot’s

movement was controlled by the machine learning approach, a second set of samples was

generated using a joystick for manual control of the robot. This second set was designed

to encompass infrequent situations not present in the first set, such as the robot moving

backwards to avoid being blocked or stopping to allow people to pass.

Subjects providing scores for SocNav2 were presented with 4-second sequences and asked

to evaluate the robot’s behaviour during the final second. The video was shaded during the
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(a) First second. (b) Second second.

(c) Third second. (d) Fourth second

Figure 5.1: A SocNav2 sequence. The shaded images correspond to the first 3 seconds of the sequence,
which are also shown to subjects to provide context. The last image, in Fig. 5.1d, corresponds to the second
that the users score. During the whole sequence, the robot is moving forwards.

initial three seconds to facilitate the identification of the specific time slice to be assessed (see

Fig. 5.1). The geometrical and relational data of the sequences were stored in JSON files.

After watching the video (as many times as necessary), subjects were asked to provide a

score for Q1 and Q2 based on the reference values provided. Although some guidelines were

given, subjects were encouraged to freely express their opinions. The guidelines included:

• Disregard the goal when answering Q1. It should only be considered when answering

Q2.

• The closer the robot gets to people, the more it can be considered disturbing.

• In smaller rooms with a higher number of people, closer distances are more acceptable

compared to larger rooms with fewer people.
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• The robot must avoid colliding with objects or walls. If it collides, it should receive a

score of 0.

Subject1 Subject2 Subject3 Subject4

Subject1 0.83 0.75 0.80 0.56

Subject2 0.75 0.88 0.85 0.63

Subject3 0.80 0.85 0.88 0.62

Subject4 0.56 0.63 0.62 0.81

Table 5.1: Inter-rater and intra-rater consistency of four subjects for Q1.

Subject1 Subject2 Subject3 Subject4

Subject1 0.74 0.68 0.72 0.57

Subject2 0.68 0.71 0.74 0.63

Subject3 0.72 0.74 0.76 0.64

Subject4 0.57 0.63 0.64 0.73

Table 5.2: Inter-rater and intra-rater consistency of four subjects for Q2.

Six subjects participated in scoring the dataset, yielding a total of 13, 406 scored sam-

ples. This initial set of samples was expanded through data augmentation. Specifically,

each scenario was mirrored along the vertical axis, assuming the same scores as in the

original scenario. Moreover, each raw and mirrored scenario was rotated by 180◦, with the

robot’s advance speed sign also being changed. This extension assumes that human discom-

fort remains unchanged regardless of whether the robot is moving forwards or backwards.

Consequently, the data augmentation process resulted in a final dataset comprising 53, 600

samples.

To analyse the consistency of the dataset’s scoring, the inter-rater and intra-rater agree-

ments were computed for four subjects using the linearly weighted kappa coefficient [41].

For the inter-rater consistency, common samples scored by each pair of subjects were con-

sidered, with a minimum of 609 common samples for which this coefficient was obtained.

To measure the intra-rater reliability, each user scored 200 duplicate samples. Tables 5.1

and 5.2 display the inter-rater and intra-rater consistency for the scores of Q1 and Q2,

respectively (intra-rater in the diagonal cells, inter-rater in the remaining cells).

As demonstrated in Table 5.1, the intra-rater consistency for Q1 is “almost perfec”
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according to the scale defined in [102]. The inter-rater agreement for Q1 can be considered

substantial in most cases, with only subjects 1 and 4 having a lower agreement, which still

falls within the high “moderate” range. Table 5.2 reveals that the consistency for Q2 is

generally lower than for Q1. This decrease can be attributed to the question’s nature, as

subjects may vary significantly in their opinions about how the robot should “efficiently”

reach the goal position. Nonetheless, the inter-rater and intra-rater consistency remains

“substantial”, except for subjects 1 and 4, which are considered high “moderate”.

5.3 Video to Graph Transformation

This chapter adopts the strategy developed in the previous chapter for graph generation

and incorporates several modifications to account for velocity and trajectory information.

This section details the scenario-to-graph transformation process, wherein each scenario

consists of a short video, as discussed in Section 5.2. These graphs encode the room’s

information and are used to generate discomfort scores by SNGNNv2, as seen in Section

5.4. Furthermore, these graphs are similar to the ones employed for training SNGNN-2Dv2,

with some modifications and the addition of a grid of nodes to adapt it for image generation

(see Section 5.5.2).

5.3.1 Graph Structure

The input graphs for SNGNNv2 models are composed of a sequence of three sub-graphs

corresponding to three snapshots of the videos shown to the subjects. Each sub-graph

(referred to as a ’frame graph’) is separated by a one-second interval, with the last graph

being the one that users scored. The graph creation process entails two steps. First, each

snapshot is transformed into a separate frame graph. Once the three frame graphs in the

sequence have been generated, they are merged into a single graph representing the sequence

(see Figure 5.2). This temporal connection is established with an edge linking the node in

each frame graph to the corresponding node in the subsequent frame graph.

The nodes in the graphs have five types:

• room (r): There is one room node per frame graph. It acts as a global node [15] and

it is connected to any other node of the graph for that frame. Using a global node
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Figure 5.2: Example of how the scenario-to-graph transformation works, based on the scenario depicted
in Figure5.1. The sub-indexes of the node names refer to the time frame of each node.

favours communication across the graph and reduces the number of layers required.

• wall (w): A node for each of the segments defining the room.

• goal (g): Used to represent the position that the robot must reach.

• object (o): A node for each object in the scenario.

• human (h): A node for each human. Humans might be interacting with objects or

other humans.

In the generated graph, there is no node explicitly representing the robot because all

node features are in the robot’s reference frame (further explained in Section 5.3.2). For

every human involved in interactions, two new edges are added between the human and the

entity (human or object) they interact with, one in each direction. The graphs also include

self-edges for all nodes, and the room node is connected in both directions to the rest of the

nodes in the graph. For instance, Figure 5.1 illustrates four frames of a sequence where four

humans are in a room with several objects. Two of the humans are interacting with each

other, another human is interacting with an object, and the remaining human is moving

without interacting with another human or object. Figure 5.2 displays the structure of the

resulting graph.
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5.3.2 Node and Edge Features

Node feature vectors are constructed by concatenating different sections. The first section

is a one-hot encoding for the type of node. The remaining sections are type-specific and are

only filled if the node is of the corresponding type, filled with zeros otherwise. The features

used in the sections for human, wall, and object nodes are: position, distance to the robot,

speed, and orientation, all from the robot’s frame of reference. Position and distance are

represented in decametres for normalization purposes. Similarly, the orientation is split

into sine and cosine, instead of including the angle itself. For wall segments, the position is

the centre of the segment, and the orientation is the tangent. Object sections also contain

width and height features defining the object’s bounding box. The section corresponding

to the room symbol is composed of the number of humans in the room and the velocity

command given to the robot. Table 5.3 illustrates this layout.

n. one-hot 5 elements (one per node type)

f. one-hot 3 elements (one per frame graph)

room number of humans adv. speed rot. speed

human pos. (2D) speed (3D) orientation (2D) distance

object pos. (2D) speed (3D) orientation (2D) distance shape (2D)

wall pos. (2D) orientation (2D) distance

goal pos. (2D) distance

Table 5.3: Structure of the feature vectors of nodes. The first two sections refer to the one-hot encodings
that specify the node types and the frame they belong to. Positions (pos.) are defined by 2D Euclidean
coordinates. Speeds are expressed using 3 dimensions for the linear and angular velocities in the plane.
Orientations are given by the corresponding sine and cosine values. All metric values are in the robot’s
reference frame.

Edge features were implemented differently for the experiments depending on the blocks

used. Some GNN blocks such as GAT or GCN, do not support edge features or labels, so no

edge information is provided when they are used (see Section 3.2 for more details). R-GCN

blocks support edge labels, so a different label is used for each possible type of relation (e.g.,

human-human, human-room, wall-room). MPNN blocks treat edge information as features

not limiting it to identifiers. Therefore, besides containing values identifying the kind of

relationship as a one-hot encoding, edge features also include the distance between the two

entities being linked when using MPNN blocks.
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5.4 Prediction of Discomfort Scores in Dynamic Scenarios,

SNGNNv2

This section outlines the procedure for creating the SNGNNv2 architecture. This model is

capable of taking a graph with the information of the environment and output the two scores

detailed in Section 5.2. Different GNN models are trained to estimate people’s comfort given

a scenario and its previous states. GNNs are proposed because the information that social

robots can work with is not just a map and a list of people, but a more sophisticated

data structure where the entities represented can have different relations among them. For

example, social robots could potentially have information about who a human is talking

to, where people are looking at, who are friends with whom, or who is the owner of an

object in the scenario. Regardless of how this information is acquired, it can be naturally

represented using a graph, and GNNs are a particularly well-suited and scalable machine

learning approach to work with these graphs.

Based on the assumption that in real-life scenarios, the model can be used with third-

party body trackers (e.g., [140] or the models developed in Chapter 6) and path planning

systems as demonstrated in 5.5.4, the evaluation of the SNGNNv2 is performed only against

the SocNav2 dataset presented in Section 5.2, which only focuses on the step of generating

scores.

Because all nodes are connected to their corresponding room node, the GNNs were

trained to perform backpropagation based on the feature vector of the room node in the

last layer. Three GNN blocks were considered in the experiments: the two best-performing

GNN blocks for SNGNN [118] (i.e., R-GCN and GAT) and MPNN. The reader can refer

to Chapter 3 for more information about these networks.

The benchmarking of the different architectures involved 341 training sessions using the

SocNav2 dataset, with 47, 598 samples for training, 643 for evaluation, and 643 for testing.

Considering the variability of scenarios, 643 samples were deemed to be a representative

sample set size. Hyperparameters were randomly sampled from the range values shown in

Table 5.4. Table 5.5 presents the results for the best model of each architecture, detailing

the performance on the different dataset splits.
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hyperparameter min max

max. epochs 1000

patience 4

batch size 25 70

hidden units 20 90

attention heads 3 10

number of bases 4 24

learning rate 1e-4 5e-4

weight decay 0.0 1e-6

layers 3 9

dropout 0.0 1e-6

alpha 0.1 0.3

Table 5.4: Ranges of the hyperparameter values sampled. Attention heads is only applicable to GAT
blocks. Number of bases is only applicable to R-GCN blocks.

GNN block
training loss development loss test loss

(MSE) (MSE) (MSE)

R-GCN 0.017347 0.040098 0.040607

GAT 0.015188 0.037838 0.035818

MPNN 0.025020 0.036821 0.035192

Table 5.5: The 3 GNN blocks tested along with their MSE for SocNav2.

The training results obtained (see Table 5.5) show that MPNN blocks delivered the best

results, with a Mean Squared Error (MSE) of 0.036821 for the evaluation dataset. The best

model, which was selected based on the MSE on the evaluation split, yielded an MSE of

0.035192 for the test split. The best-performing model was trained with a batch size of 57,

a learning rate of 2.5e-4, weight decay regularisation of 1.0e-6 and no dropout. Its network

architecture is a sequence of 6 MPNN blocks with 40, 30, 21, 12 and 3 hidden units.

The code to test the resulting GNN model, including the code implementing the scenario-

to-graph transformation and the code to train the model suggested, has been published in

a public repository as open-source software: https://github.com/gnns4hri/sngnnv2.

5.4.1 Visual Experimental Results

To provide an intuitive understanding of the network’s output, the outputs for the scenarios

shown in Figures 5.3, 5.4, and 5.1 were computed. The model’s output was considered

for all different robot positions in the room, resulting in a heatmap representation of the

network’s response for each tested scenario. Note that a query to the network is done
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for each possible position of the robot. To facilitate the interpretation of each heatmap,

the elements present in the scenarios have been drawn over the image using the following

representation: oriented blue circles for humans, small green circles for objects, a larger

green circle for the goal position, and red lines for interactions. The horizontal and vertical

axes of the room’s frame of reference are also depicted using black dashed lines, which help

differentiate the heatmaps.

(a) Fourteen humans. (b) Two humans.

Figure 5.3: Two scenarios containing a different number of people. Results for these scenarios are shown
in Figure 5.5.

(a) First frame of the sequence. (b) Last frame of the sequence.

Figure 5.4: Scenario with two groups of people walking. Results for these scenarios are shown in Figures 5.6
and 5.7.

Figure 5.5 displays the generated maps for the two scenarios shown in Figure 5.3, con-

sidering the network output for Q1. Different colours represent the output of the network.

Red is used to indicate a value close to 0 (unacceptable situation), while grey tones repre-

sent the remaining range of values; darker grey indicates lower values (higher discomfort),

and lighter grey represents higher values (socially acceptable). This test demonstrates how
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the network adapts to variously populated environments. For crowded spaces, such as the

one in Figure 5.3a, the discomfort area of the humans narrows compared to scenarios with

less dense spaces. For example, the unacceptable area of the humans in the bottom left of

the room is wider in Figure 5.5b than in Figure 5.5a. Furthermore, the network response

increases in positions near the walls when the number of people in the room is high (refer to

the goal marked by a green circle in the top right corner of the images). This implies that

positions near the room’s limits are considered more suitable for crowded environments.

(a) Fourteen humans. (b) Two humans.

Figure 5.5: Output of the model for the two scenarios in Figure 5.3. The response of the model is more
strict for the case with fewer people.

The scenario in Figure 5.4 has been used to test how the actions of the robot have an

influence on the behaviour of the network. Figures. 5.6 and 5.7 show the response of the

network for Q1 and Q2, respectively.

In Figure 5.6, the images display the results of Q1 estimation for different actions of the

robot, from bottom to top and left to right: turning left, stopping, turning right, moving

forward to the left, moving forward, and moving forward to the right. The unacceptable

area (red area) for moving people changes based on their motion direction and the robot’s

actions, whereas for standing humans, this area remains mostly unchanged. When the robot

moves forward (Figure 5.6b), the red area for the group of people moving in the opposite

direction extends toward their movement direction. In contrast, for the same robot action,

the red area for the group of people moving horizontally stays centred at the vertical axis
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b

(a) Moving forward to the left. (b) Moving forward. (c) Moving forward to the right.

(d) Turning left. (e) Stopped. (f) Turning right.

Figure 5.6: Response of the model for Q1 for the scenario in Figure 5.4 considering different actions of the
robot.

position of the humans. For this second group, the unacceptable area extends forwards or

backwards when the robot moves to the left (Figure 5.6a) or to the right (Figure 5.6c).

When the robot is stopped or turning without translation, the positions with the lowest

scores elongate toward the opposite direction of the humans’ movement (Figures 5.6d, 5.6e,

and 5.6f). These positions correspond to the trajectory followed by the humans during the

sequence, indicating that the network’s response is consistent with the situation.

The network’s response to human presence remains similar for Q2 (as shown in Fig-

ure 5.7), wherein there is an exclusion zone around the humans’ positions where the robot

is prohibited from entering. However, in this scenario, the positions with low values increase

according to the goal position and the action of the robot. For instance, moving forward

leaving the goal behind has a very low score. Thus, when the goal is situated behind the

robot, the best scoring actions are turning right or left according to the relative position of

the goal.
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(a) Moving forward to the left. (b) Moving forward. (c) Moving forward to the right.

(d) Turning left. (e) Stopped. (f) Turning right.

Figure 5.7: Output of the model for Q2 for the scenario depicted in Figure 5.4 considering different actions
of the robot.

To test the network response to potential interactions between humans or humans and

objects, the scenario of Figure 5.1 has been used with the robot moving forward. Results

for this scenario with and without interactions for Q1 are shown in Figure 5.8. As can be

observed in Figure 5.8a, the interaction between the human and the object produces lower

values than the interaction between the two humans. This is consistent with the action

of the robot since the human-object interaction takes place in the direction of the robot’s

movement. Consequently, the interruption caused by the robot’s action is more intense

than the one produced in the human-human interaction. If no interactions are taking place

(Figure 5.8b), the areas between the two humans at the top of the image and the human and

the object on the left are considered socially acceptable positions. This demonstrates that

the network is properly generalising the different kinds of situations. Another interesting

result seen in Figure 5.8b is the different treatment of humans and objects when objects

are not being used by humans. Specifically, being close to an object results in a high

response, while being close to a human is not considered acceptable. This indicates that the
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(a) With interactions. (b) Interactions removed.

Figure 5.8: The output of the model for the sequence is depicted in Figure 5.1. Figure 5.8a is the output
of the model with the sequence in its original form. Figure 5.8b is the output of the model with the
interactions removed. It is apparent that the response of the model for the perpendicular interaction is
lower than that of the parallel one. This aligns with the intuition that the robot would be less disturbing if
crossing perpendicularly than along the interaction line.

network can distinguish between different types of entities and their interactions, adapting

its assessment of social acceptability accordingly.

Figure 5.9: Histogram of the absolute error in the test dataset for Q1.

The subjective nature of the scores in the dataset means that there is some level of

disagreement even among humans, as human feelings are highly subjective. To compare

the performance of the network with human performance, we used a subset of the samples

in SocNav2 which was labelled twice by each of the subjects (the same subset used to
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Figure 5.10: Histogram of the absolute error in the test dataset for Q2.

obtain Tables 5.1 and 5.2). Each scenario is annotated twice by each subject to mitigate

the subjective discrepancies among measurements and to achieve more stable scores. The

mean of the 8 scores provided for each scenario was used as a reference, and the mean

squared error (MSE) for each of the participants was computed. The average MSE was

0.036981, which is considered indicative of human accuracy. The network’s performance,

with an MSE of 0.035192, is close to human accuracy and even slightly better. Figures 5.9

and 5.10 show the histograms of the model’s error in the test split of the dataset for Q1

and Q2. In [118] (SNGNN ), the results were compared (disregarding speed) with [181],

achieving a considerably lower MSE (0.022 versus 0.12965). Although the comparison was

favourable, it is not entirely fair, as the approaches have slightly different goals. Other

researchers are currently working with the datasets used in this chapter and SocNav1 [119],

but there are no published works available for comparison at the time of writing.

5.5 Generation of Maps from Dynamic Data, SNGNN-2Dv2

This section outlines the development and experimentation of SNGNN-2Dv2, a model capa-

ble of generating two-dimensional disruption maps for dynamic environments from graphs.

As discussed in Section 5.4, it is possible to construct these maps by querying SNGNNv2

for every potential robot position within the room, obtaining the value of each pixel in the

final disruption map. Nevertheless, this method is exceedingly time-consuming for real-time

applications, averaging 140 seconds per map generation.
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Adopting a similar approach to Chapter 4, a dataset comprising graphs and images is

employed to train a GNN and CNN combination for expeditious map generation. Section

5.5.1 explains the bootstrapping process for converting scalar dataset labels to 2D image

labels using SNGNNv2. Subsequently, Section 5.5.2 describes the modification of graphs

in Section 5.3 to incorporate a lattice of nodes, facilitating the utilisation of the transpose

CNN for generating the final maps. Lastly, Section 5.5.3 outlines the pipeline of the ultimate

model, and Section 5.5.4 presents the experimental procedures conducted to evaluate the

performance of SNGNN-2Dv2.

5.5.1 Bootstrapping of 2D Dataset from SocNav2

As in Chapter 4, it is necessary to create a dataset with 2D images as labels for training the

cost maps generator model in a supervised fashion. Although the data directly acquired from

humans is of scalar nature, a two-dimensional dataset can be bootstrapped by generating

random scenarios and making multiple queries to the SNGNNv2 model, one per pixel of

the data sample as we saw in Section 5.4. Each pixel of the cost maps is generated by using

SNGNNv2 to estimate the score Q1 for that position of the robot in the room. Figure 4.3

depicts this sampling process. Note that Q1 score has been used since it does not account

for the goal of the robot. As the main goal of SNGNN-2Dv2 is to be used for planning, no

specific robot movements must be considered. For this reason, to generate the 2D images,

the robot remains still during the generation of the graphs used as input to the SNGNNv2

model.

Ultimately, the bootstrapped dataset consists of triplets: small video snippets, corre-

sponding JSON files containing video information as inputs, and matching cost maps as

labels. The cost maps, generated from each scenario within the bootstrapped dataset,

present a resolution of 150 × 150. This resolution was selected to balance the quality of

the resultant image against the generation time. For training the SNGNN-2Dv2, additional

data was collected in the same manner as for SocNav2, with data augmentation achieved

through horizontal and vertical mirroring of the scenarios. The dataset comprises 69, 861

scenarios in total, segregated into 55, 711 training samples, 7, 051 for evaluation, and 7, 099

for testing.
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5.5.2 Adding a Grid to the Graph

As mentioned, graph generation constitutes a critical step, given that the training dataset

solely provides metric data in JSON format from the environment (positions, velocities,

orientations), which is unsuitable for direct GNN processing. The graph must encapsulate

all pertinent information within the scenario, as well as the interactions among its elements.

A well-designed graph is likely to enhance the model’s performance and expedite its training.

The graph devised in Section 5.3 appears to effectively encode the scenario information, as

evidenced by the satisfactory results obtained with SNGNNv2. Therefore, SNGNN-2Dv2 is

trained using similar graphs, albeit with several modifications to optimise their generation

and ensure their compatibility with the CNN.

Figure 5.11: Adaptation of Figure 5.2 including the lattice of nodes and merging the 3 temporal graphs
into an unique graph.

Firstly, the entity graph, which encodes room information as depicted in Figure 5.2

across three distinct time-frame graphs, is merged into a singular graph. Temporal infor-

mation is now encoded within the nodes’ feature vectors, eliminating the need for temporal

connections. This restructuring leads to a simplified graph, enhancing processing speed

and efficiency, while also minimising system memory usage. The new graph’s topology is

portrayed in Figure 5.11, and the nodes’ new features, to be detailed later in the text, are
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shown in Table 5.6.

Secondly, the main alteration to the graph includes adding a lattice of nodes, thereby

introducing a new node type: the grid node (nodes that constitute the lattice). The grid

consists of 19 × 19 nodes, covering a 13.3m× 13.3m square around the robot. As detailed

in Section 4.3.1, the grid serves to encode the 2D scenario information to be used by the

transposed CNN to generate the final map. The number of nodes and the area they cover are

tunable hyperparameters, balancing performance, computational time, and area coverage.

The x, y coordinates of a grid node in row i and column j, from the robot’s perspective, are

calculated using Equation 4.1.

Finally, the graph resulting from the merged temporal graphs is integrated with the grid

by linking each entity node to the nearest grid node, spatially. Each entity node can be

connected to multiple grid nodes within a specific radius, leading to the final unified graph

depicted in Figure 5.11, following a procedure similar to that in Section 4.3.1.

n. one-hot 6 elements (one per node type)

f. one-hot 3 elements (max. number of frames)

grid pos. (2D) distance (2D)

x3

room number of humans adv. speed rot. speed
human pos. (2D) speed (3D) orientation (2D) distance (2D)
object pos. (2D) speed (3D) orientation (2D) distance (2D) shape (2D)
wall pos. (2D) orientation (2D) distance (2D)
goal pos. (2D) distance (2D)

Table 5.6: Update of Table 5.3 including the features for the grid nodes and increasing the one-hot encoding
for the node types with one new element (grid-type).

Similar to the graph structure, the node and edge features closely resemble those in

Section 5.3, with some modifications. With the union of the three graphs into one, the

features of each node representing an entity are likewise merged. The metrics section for

each entity node type is triplicated, each corresponding to a distinct frame. There is a

one-hot encoding for the number of available frames, ranging from 1 to a maximum of 3.

In cases where a frame is unavailable, the fields corresponding to that frame are populated

with zeros.

Furthermore, to accommodate the grid node type, an additional element is added to

the node type’s one-hot encoding, along with a concatenation of grid features. These grid
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features encompass the 2D position of the grid node and its distance from the robot. Now,

all distances are also appended with an additional value—the complement of the normalized

distance (1 − distance). As a result, Table 5.6 represents an updated version of Table 5.3,

reflecting the graph variant that incorporates the node lattice.

In terms of edge features, new labels are introduced for the grid connections in the R-

GCN blocks. Specifically, a label is assigned for each room entity connecting to the grid

(e.g., wall-grid, room-grid, human-grid). Additionally, the labels of edges within the grid are

differentiated based on the direction of the connection, ensuring an accurate representation

of their relative positions (i.e., up, down, left, right). For the MPNN variant, the edges

connecting to any grid node retain the same format as the graph in Section 5.2—values

identifying the nature of the relationship as a one-hot encoding and the distance between

the two connected entities. It is noteworthy that the GNN variation that eventually delivers

the best results is a GAT, which does not require these edge features.

5.5.3 Model

Figure 5.12: Pipeline of the whole SNGNN-2Dv2 model starting from the input graph and outputting the
cost map.

The architecture, depicted in Figure 5.12 has three segments. The first segment is a

sequence of 7 GAT blocks. Its output is a graph with the same nodes and structure as

the input graph, whose feature vectors have 35 dimensions. The second segment of the

architecture filters out nodes that are not part of the grid and restructures the tensor

containing the feature vectors of the grid’s nodes into a 19×19×35 tensor so that it can be

used as input to the CNN-based network. The third and last segment of the architecture

is a U-Net CNN (see Section 2.4.2 for more details) with the same parameters used by the

generator of pix2pix [81]. The output image after the U-Net has a resolution of 256×256. It

is important to note that the label images within the dataset have a resolution of 150× 150

pixels. Thus, it is imperative to rescale them to align with the dimensions of the model’s
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output for the loss calculation.

5.5.4 Experiments

This section outlines the results of the experimentation conducted to evaluate SNGNN-2Dv2

for Human-Aware Navigation (HAN), organized into three subsections: a) Precision and

Time Efficiency: This segment presents the precision and time efficiency of the trained model

on the test set. Visual results of the generated cost maps are also showcased; b) Navigation

in a real environment: This experiment involves comparing the cost maps generated by

SNGNN-2Dv2 with those created using the model in [181] in a real robot within the ARP

Laboratory at Aston University (see Appendix A. The maps are integrated into the ROS

navigation stack for HAN, and the results are compared using social metrics; c) Comparative

Analysis with pix2pix : This section provides a comparative analysis with a CNN-based

approach, highlighting the advantages of employing a GNN.

a) Training Results: Time and Accuracy

Figure 5.13 shows the output of SNGNN-2Dv2 in comparison with the ground truth from

the bootstrapped dataset and also shows the scenario from SONATA. As the reader can

observe, the visual results are almost identical.

For the optimisation of the hyperparameters, the process of random search ran 67 train-

ing tasks using the ranges in Table 5.4. After this process, some of the hyperparameters were

manually adjusted to achieve an MSE of 0.0018720.0018720.001872, 0.0048330.0048330.004833 and 0.0047500.0047500.004750 for the training,

development and test datasets, respectively. The average time for a query to the network

is of 111111 milliseconds in an NVIDIA Jetson AGX Orin 1. This generation time allows the

model to be used in real-time applications as demonstrated in the next experiment (b).

The architecture obtaining the best results is a Graph Attention Network with 7 layers

followed by the U-Net of the pix2pix generator [81]. The model reached the best performance

on the development dataset after 195 epochs. Table 5.7 shows the hyperparameters used to

train the best model:

1Specification of NVIDIA Jetson Orin: https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-orin/
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(a) L-shaped scenario.

(b) Squared-shaped scenario

Figure 5.13: Results generated by SNGNN-2Dv2 (left column) compare with the ground truth (middle
column) for two SONATA scenarios (right column). The first row shows the results for a L-shaped room
and the second row for a square-shaped room.

Hyperparameter Value

Batch size 40

Input channels U-Net 35

Learning rate 5e−5

Activation GAT layer elu

Final activation GAT relu

GAT hidden units [95, 71, 62, 57, 45, 35]

GAT heads [34, 28, 22, 15, 13, 10]

Alpha 0.2088642

Table 5.7: Hyperparameters used to train the best model for SNGNN-2Dv2

b) Real Environment Evaluation

To evaluate the maps generated by SNGNN-2Dv2 for HAN, the robot and environment

detailed in Appendix A are utilised. The robot employs the ROS navigation stack with a

Timed Elastic Band (TEB) planner [154]. The generated cost maps are published as a ROS

topic, to which the robot’s navigation system can subscribe and use as a local map for the
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TEB. For comparative purposes, the maps generated using GMMs in [181] were also tested.

Human positions and velocities within the room are detected using the 3D pose esti-

mator developed in Chapter 6, in conjunction with the wall-mounted cameras described in

Appendix A. A ROS plugin overlays this map onto the map created by the robot’s laser,

enabling objects to appear in the final map.

Figure 5.14: Schemes of the different scenarios used to test the maps.

Each map was tested five times across seven different scenarios, illustrated in Figure

5.14. Arguably, these scenarios represent the most prevalent social situations commonly

encountered within an indoor space, particularly with a mobile robot. The robot’s starting

point and goal remained consistent across all experiments, as indicated in the figure. The

scenarios consist of:

• Scenario A (SA): This scenario features two groups of three stationary humans,

with the groups’ centres separated by 2.5 meters. Each group’s members are located

0.8 meters from the group centre. The robot’s goal is midway between both groups,
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requiring the robot to traverse between them.

• Scenario B (SB): Identical to SA, but with an additional human added to each

group. The newly added human is highlighted in red in the top-left image of Figure

5.14.

• Scenario C (SC): This scenario involves two moving humans: one moving oppo-

site to the robot and another perpendicularly. Both humans commence movement

concurrently with the robot.

• Scenario D (SD): Here, two humans move towards the robot, side by side, with an

interaction between them. The robot’s goal is at the initial position of the humans.

• Scenario E (SE): This scenario comprises two stationary humans interacting with

each other. They stand 1 meter apart, facing each other as if in conversation. The

robot should circumnavigate the interaction area to reach the goal on the other side.

• Scenario F (SF ): Similar to the previous scenario, but substitutes one person for

an object measuring 0.8 × 0.8 meters. The human faces the object at a distance of 1

meter, interacting with it. Once again, the robot should avoid the interaction area.

• Scenario G (SG): Identical to the previous scenario but with the human and object

separated by 3 meters. Given this setup, the robot has insufficient space to bypass the

person or object, so it must traverse the interaction area while minimising disruption.

It is important to mention that only scenarios C, D, and E were recorded with real

people present. In the other experiments, where the people were stationary, their positions

were hard-coded to generate the cost maps, thereby avoiding the small error introduced by

the pose estimator in determining their positions. Additionally, it is worth noting that the

resolution of the GMM maps had to be reduced by half to ensure real-time responses. The

default resolution proved to be too slow for its use with the robot planner.

Figure 5.15 exemplifies scenarios E and D, which were recorded with real people. The

right-hand images showcase the robot’s path, along with the positions of the individuals

tracked by the 3D pose estimator developed in Chapter 6.
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Figure 5.15: Images of the experiments for scenarios C and E. The left-hand images depict actual footage
captured during the experiments, while the right-hand images display the recorded positions of the robot
and humans. The robot’s path is illustrated by a dark blue line, while magenta and cyan colours represent
the positions of the two individuals involved in the experiments.

The completion of the experiments was followed by the evaluation of results using the

same metrics that are outlined in Section 4.4.4 of the previous chapter, with an additional

success rate sr metric. Table 5.8 presents the outcomes for all the metrics across all ex-

periments conducted using GMM and SNGNN-2Dv2 maps. The best metrics values are

highlighted in bold.

The analysis of the results leads to a division of the scenarios into three distinct cate-

gories. The first category encompasses Scenarios A and B, which involve static groups of

people. Here, it is apparent that the majority of the metrics for both types of maps are

fairly comparable. However, the robot using SNGNN-2Dv2 maps reaches the goal more
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SASASA SBSBSB SCSCSC SDSDSD SESESE SFSFSF SGSGSG

GMM 5.211 ± 0.486 4.437 ± 0.244 4.433 ± 0.121 4.852 ± 0.0054.852 ± 0.0054.852 ± 0.005 5.042 ± 0.192 4.134 ± 1.0294.134 ± 1.0294.134 ± 1.029 3.383 ± 0.2313.383 ± 0.2313.383 ± 0.231
τ(s)τ(s)τ(s)

SNGNN-2Dv2 5.115 ± 0.9465.115 ± 0.9465.115 ± 0.946 4.323 ± 0.1894.323 ± 0.1894.323 ± 0.189 4.718 ± 0.1924.718 ± 0.1924.718 ± 0.192 5.298 ± 0.479 4.837 ± 0.2934.837 ± 0.2934.837 ± 0.293 4.788 ± 0.381 3.868 ± 0.182

GMM 1.134 ± 0.625 1.077 ± 0.026 0.992 ± 0.013 1.009 ± 0.0081.009 ± 0.0081.009 ± 0.008 1.051 ± 0.057 0.967 ± 0.0340.967 ± 0.0340.967 ± 0.034 1.019 ± 0.044
dt(m)dt(m)dt(m)

SNGNN-2Dv2 0.967 ± 0.0250.967 ± 0.0250.967 ± 0.025 1.01 ± 0.0161.01 ± 0.0161.01 ± 0.016 0.991 ± 0.0020.991 ± 0.0020.991 ± 0.002 1.02 ± 0.02 0.969 ± 0.0140.969 ± 0.0140.969 ± 0.014 0.996 ± 0.025 0.998 ± 0.0270.998 ± 0.0270.998 ± 0.027

GMM 3.574 ± 0.6273.574 ± 0.6273.574 ± 0.627 2.096 ± 0.3532.096 ± 0.3532.096 ± 0.353 3.609 ± 0.259 1.801 ± 0.807 4.705 ± 0.448 3.416 ± 1.3483.416 ± 1.3483.416 ± 1.348 1.011 ± 0.2091.011 ± 0.2091.011 ± 0.209
CHC(rads)CHC(rads)CHC(rads)

SNGNN-2Dv2 4.57 ± 1.696 2.431 ± 0.0435 3.041 ± 0.7543.041 ± 0.7543.041 ± 0.754 2.623 ± 0.5062.623 ± 0.5062.623 ± 0.506 4.139 ± 0.7764.139 ± 0.7764.139 ± 0.776 3.773 ± 1.112 1.21 ± 0.349

GMM 0.801 ± 0.065 0.816 ± 0.0190.816 ± 0.0190.816 ± 0.019 0.585 ± 0.034 0.471 ± 0.083 1.038 ± 0.0441.038 ± 0.0441.038 ± 0.044 1.604 ± 0.443 1.688 ± 0.033
dmin(m)dmin(m)dmin(m)

SNGNN-2Dv2 0.81 ± 0.030.81 ± 0.030.81 ± 0.03 0.731 ± 0.022 0.771 ± 0.2180.771 ± 0.2180.771 ± 0.218 0.607 ± 0.0410.607 ± 0.0410.607 ± 0.041 0.861 ± 0.048 2.006 ± 0.1062.006 ± 0.1062.006 ± 0.106 1.878 ± 0.0451.878 ± 0.0451.878 ± 0.045

GMM 0 0 0 2.963 ± 2.963 0 0 0
sii(%)sii(%)sii(%)

SNGNN-2Dv2 0 0 0 000 0 0 0

GMM 59.52 ± 3.3159.52 ± 3.3159.52 ± 3.31 64.414 ± 3.70264.414 ± 3.70264.414 ± 3.702 18.855 ± 1.741 27.164 ± 1.725 10.155 ± 3.45110.155 ± 3.45110.155 ± 3.451 15.365 ± 30.729 0
sip(%)sip(%)sip(%)

SNGNN-2Dv2 78.266 ± 4.722 75.216 ± 1.41 13.799 ± 5.37113.799 ± 5.37113.799 ± 5.371 23.342 ± 1.88423.342 ± 1.88423.342 ± 1.884 37.873 ± 3.345 000 0

GMM 0 0 0 0 0 0 100
sir(%)sir(%)sir(%)

SNGNN-2Dv2 0 0 0 0 0 0 100

GMM 100 100 80 40 60 100 100
sr(%)sr(%)sr(%)

SNGNN-2Dv2 100 100 80 100100100 100100100 100 100

Table 5.8: Results of the metrics for each of the scenarios comparing SNGNN-2Dv2 with the GMM model
in [181]

quickly, albeit at the expense of closer proximity to humans. In densely populated scenar-

ios, it may be deemed acceptable to be closer to humans due to the lack of available space.

This premise is supported by the scores given by participants who contributed to labelling

the crowded scenarios in SocNav2.

Scenarios C and D form the second category, which includes individuals moving close

to the robot. In these cases, the use of SNGNN-2Dv2 cost maps offers better social met-

rics, with fewer intrusions into intimate and personal spaces. This implies that the model

effectively learns to predict individuals’ movements and directions more accurately. Fur-

thermore, the success rate of the SNGNN-2Dv2 maps is notably higher in Scenario D.

Lastly, Scenarios E, F, and G form the final category, which evaluates the interpretation

of human-human and human-object interactions by the maps. In the case of human-human

interaction (Scenario E), the robot reaches the goal faster and with fewer heading changes

when using SNGNN-2Dv2 maps. Although it does get slightly closer to the individuals

involved, its success rate surpasses that of the GMM maps. In scenarios involving human-

object interaction (Scenarios F and G), the robot performance using SNGNN-2Dv2 maps

is similar to that of GMM maps in terms of speed and heading changes. Nevertheless, the

robot does not come as close to the human and opts to pass closer to the object instead,

thereby highlighting the distinction made between humans and objects in SNGNN-2Dv2.
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c) Comparison with Pure CNN Based Model

The presented experiment positions the results of cost map generation utilising a CNN-

based model, in contrast with the SNGNN-2Dv2. The model selected for comparative

evaluation is pix2pix [81], a highly regarded Generative Adversarial Network (GAN) capable

of transposing an image into another. Same to the application in this study, pix2pix was

trained utilising an identical dataset, achieving a Mean Squared Error (MSE) of 0.00849260.00849260.0084926

within the test set.

For pix2pix, the input volumes are constructed by concatenating three video frames from

the dataset along the channel dimension. These frames have a temporal difference of one

second, mirroring the method used to construct the graph for the SNGNN-2Dv2.

(a) Input (b) Ground truth (c) Output pix2pix

Figure 5.16: Pix2pix results 1

(a) Input (b) Ground truth (c) Output pix2pix

Figure 5.17: Pix2pix results 2

Figures 5.16 and 5.17 provide a visual comparison of the pix2pix results alongside the

corresponding ground truth used for training, including a frame from the source video on

the left-hand side. As the reader can observe, the outcomes bear striking visual similarity,
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as well as closely align with the results generated by the proposed model SNGNN-2Dv2 as

illustrated in Figure 5.13. Nonetheless, as previously highlighted, the SNGNN-2Dv2 model

asserts two primary advantages over CNN-based models: superior representation of entity

interactions within the environment and an added layer of abstraction that renders the

model scenario-agnostic. These benefits are demonstrated across two different experiments.

In the initial experiment, pix2pix is tasked with generating cost maps for two scenarios

in which two individuals are interacting. The resultant figures can be found in Figures

5.18 and 5.19. Evidently, pix2pix lacks any information within the input regarding the

occurring interaction. Consequently, it fails to accurately represent the interaction area

when compared with our model. This shortcoming is notably observable in Figure 5.18,

wherein pix2pix incorrectly models interaction areas where no interaction exists and vice-

versa.

(a) Input (b) Ground truth (c) Output pix2pix (d) Output SNGNN-2Dv2

Figure 5.18: Pix2pix results with interaction 1

(a) Input (b) Ground truth (c) Output pix2pix (d) Output SNGNN-2Dv2

Figure 5.19: Pix2pix results with interaction 2

In the final experiment, alterations were made to the texture and colour of the room floor

within the video. Figures 5.20 and 5.21 exhibit the outcomes for two distinct examples. In

this case, the output image produced by pix2pix is nearly unidentifiable, given its heavy

reliance on visual features. Contrarily, the output generated by SNGNN-2Dv2 remains

unaffected by the transformation in the floor pattern.
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(a) Input (b) Ground truth (c) Output pix2pix (d) Output SNGNN-2Dv2

Figure 5.20: Pix2pix results with different floor 1.

(a) Input (b) Ground truth (c) Output pix2pix (d) Output SNGNN-2Dv2

Figure 5.21: Pix2pix results with different floor 2.

5.6 Conclusions

To the best of my knowledge, all works modelling discomfort around robots disregards infor-

mation such as explicit interactions, trajectories or speed. This chapter tackled these issues

with a specific scenario-to-graph transformation and a graph neural network architecture,

SNGNNv2, composed of 6 MPNN blocks.

The results obtained are close to human accuracy and improve those in [118] not only

in terms of MSE but also in terms of the features considered (i.e., the trajectory and speed

of the robot and the humans). The results confirm that the discomfort is only skewed to

the front of the humans when there is movement involved, which was initially hypothesised

in [118]. The results also show that: a) the model adapts to a variable density of humans

(see Fig. 5.5); b) static humans are considered more carefully since they are more likely to

move; and c) the model can consider the interactions which have been given explicitly.

The development of SNGNNv2 has facilitated the creation of a bootstrap dataset that

trains a model, SNGNN-2Dv2, to generate cost maps directly from graphs. As demonstrated

in Section 5.5.4, this model can be applied to produce maps for real-world human-aware

navigation with a robot, achieving superior results compared to the GMM maps generated
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by the model in [181]. Furthermore, SNGNN-2Dv2 remains unaffected by changes in the

scenario’s appearance and captures human-human and human-object interactions, which

is a marked advantage over a CNN-based model that relies on raw image inputs. This

advantage is underscored in Section 5.5.4.

Future works point to user profiling and personalisation, as well as considering the ac-

tivity of the humans and their gaze as done in works such as [35]. Also, an ongoing line

of research explores ways of linking the output of SNGNNv2 (questions Q1 and Q2) to

driving control of the robot. SNGNNv2 and SNGNN-2Dv2 could also benefit from harness-

ing contextual cues extracted through commonsense reasoning and knowledge acquisition

frameworks, akin to the model proposed by Sridharan et al. [165]. This approach can offer

the advantage of reduced computational load compared to deep learning methods for scene

understanding. An end-to-end solution is a possibility but complicates the acquisition of

labelled examples and the modulation of the final control action. An interesting alternative

would be to use the output of the GNN as an additional restriction to be fulfilled by a

Model Predictive Controller [128].
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Chapter 6

Human Pose Estimation from

Camera Sensors

Part of the work presented in this chapter has been adapted from the following publications:

[145] Rodriguez-Criado, Daniel, P. Bachiller, P. Bustos, G. Vogiatzis, and L. J. Manso.

Multi-camera torso pose estimation using graph neural networks. In 2020 29th IEEE Inter-

national Conference on Robot and Human Interactive Communication (RO-MAN), pages

827–832. IEEE, 2020.

Part of the work in this chapter is also under review at the International Journal of Com-

puter Vision with the title “Multi-person 3D Pose Estimation from Unlabelled Data”.

Human detection, pose modelling and orientation detection have a plethora of appli-

cations, including video surveillance [188, 56, 44], assisted living [27], and autonomous

vehicles [54]. In addition to any direct application, it is also the basis of trajectory predic-

tion [160, 169], interaction detection, and gesture recognition [3]. Extensive research efforts

have been made with different technologies such as LiDAR technology [200, 171], RGB

cameras [177], and RGBD cameras [24, 202]. The number and significance of applications

make this field highly impactful, thus motivating the work presented in this chapter. This

chapter introduces two distinct approaches for pose estimation: the first one focuses on
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human position in the 2D floor plane and orientation estimation using supervised learn-

ing (see Section 6.2), while the second estimates full 3D human pose from unlabelled data

(see Section 6.3). The second system is employed in the experiments in Section 5.5.4 of

the previous chapter to detect people in the environment; these positions are then used by

SNGNN-2Dv2 to generate the cost maps. It is worth noting that both systems presented

in this chapter operate in multi-camera and multi-person environments taking as input raw

images from the cameras.

Numerous usability, cost and operational requirements can be anticipated for a Human

Pose Estimator (HPE), as well as for estimating people’s position and orientation. For

instance, most applications require support for multiple individuals. Moreover, except for

a few niche cases, HPEs must accommodate occluded body parts. The majority of applica-

tions would also benefit from limiting sensors to RGB cameras, avoiding the need for RGBD

or other costlier hardware. An ideal HPE would exploit the available context to provide 3-

dimensional data for all keypoints, even when not all of them are visible. Another desirable

feature for any learning-based HPE would be not to require a labelled dataset when imple-

mented in a new space, as these datasets can be expensive and time-consuming to compile.

The HPE models developed in this chapter are designed with these crucial considerations

in mind, aiming to incorporate these desired features.

RGB-based multi-human and multi-view estimation applications typically employ a

three-step pipeline: a) human detection and 2D pose estimation in images using, for ex-

ample, a Convolutional Neural Network (CNN); b) identification of correspondences across

different views of the people detected in the previous step; and c) estimation of 3D poses, po-

sitions, or orientations for each individual based on the image coordinates of their keypoints

across various views. Both contributions presented in this chapter build upon publicly avail-

able pose detectors, such as those in [1, 26], for the first step of the pipeline. The system

introduced in Section 6.2 proposes a novel solution for the third step, while the system in

Section 6.3 designs new solutions for the second and third steps. It is crucial to empha-

sise that the systems developed in this research can be integrated with any third-party 2D

detector.

Regarding the second step, which involves associating 2D poses corresponding to the
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same person across different images, the literature addresses the problem using both ap-

pearance and geometric cues. Examples include employing epipolar geometry to assign a

cost to each detected pose [22] or embedding appearance features using a pre-trained model

to provide affinity scores between bounding boxes [46]. The system developed in Section

6.2 approaches this step in a manner similar to existing literature, relying on geometric

cues and using the Bhattacharyya distance between detections in consecutive frames for

matching. However, the system in Section 6.3 introduces a new data-driven solution for

matching different views from unlabelled data. Given the desired multi-person support and

the irrelevance of the order in which people are detected, a Graph Neural Networks (GNNs)

architecture is chosen to match people’s views, as they are order-invariant and can handle

a variable number of input nodes.

Traditionally, the final step, 3D pose estimation, has been performed using triangulation

or pictorial structure models. The main limitation of these classic approaches arises from

their inability to predict occluded parts, as these methods cannot estimate positions for

keypoints that are occluded in many or all views. To overcome these limitations, both

systems presented in this chapter utilise a learning-based approach for this step. Arguably,

an artificial neural network can learn to hallucinate the occluded parts of the body even

when they are not visible. This is based on the intuition that the network should be able

to exploit contextual information from the remaining keypoints and the existing views, if

available. For instance, a network could learn to implicitly internalise the proportions of the

human body and its bilateral symmetry. Therefore, if the keypoint for the left elbow is not

visible from any camera, the network, by knowing the position of the wrist and the average

proportions of a human forearm (or the length of the opposite forearm), could estimate

the position of the elbow. Efficiently embedding these complex yet helpful biases would be

highly challenging in non-data-driven approaches.

A significant limitation of most current data-driven solutions, particularly those that

provide multi-camera support, is the necessity of annotating datasets to train the models

in a supervised fashion. It is worth noting that multi-camera datasets are specific to the

relative positions of the cameras, rendering the datasets scenario-specific. Consequently,

to use the corresponding approaches, an annotated dataset must be compiled for each

scenario, which is time-consuming and requires expensive tracking systems. Moreover, the
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usefulness of a vision-based pose-estimation method would be questionable if a separate

system capable of providing ground truth is available. To alleviate this problem, the data

gathered in the first project is a mix of labelled and simulated data. Simulation enables

the rapid and straightforward generation of new data points. It is the second project that

truly introduces a solution to fully avoid the need for annotated datasets. The models in

this project are trained in a self-supervised manner. The method is explained in detail in

Section 6.3.1.

In summary, the specific contribution of the first project is the estimation of hu-

man torso 3D pose and its orientation using a GNN from raw images. To the best of

my knowledge, there are no previous GNN models to predict pedestrian orientation. The

contributions of the second project are twofold:

• A solution for matching different 2D poses from multiple cameras using a GNN, al-

lowing for a variable number of people in the scenario.

• A model that infers the 3D keypoints of the detected humans using self-supervised

learning by minimising the difference between the 2D detected keypoints’ coordinates

and those of the estimated poses’ re-projections. Furthermore, as demonstrated in

the experiments, the system can be applied to mobile robots without retraining for

different scenarios, provided only onboard cameras are used.

The next section introduces the most relevant 2D human pose detectors and reviews the

current state of the art in position and orientation detection and 3D pose estimation. The

remainder of the chapter is divided into two sections containing the two distinct mentioned

projects. Section 6.2 details the project for the estimation of human torso positions and

orientations, and Section 6.3 introduces the 3D HPE system trained with unlabelled data.

Lastly, Section 6.4 summarizes the conclusions of the results obtained in these two projects.

It highlights the key findings, contributions, and potential future directions for research in

the area of human pose estimation using multi-camera systems and unlabelled data.
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6.1 Related Work

This section reviews the leading literature on human position and orientation detection as

well as 3D Human Pose Estimation. It begins by briefly covering the most popular 2D

detectors, as they are leveraged in many 3D estimation models. It is worth noting that

works using RGB-D sensors (with depth channel) are not discussed since the work in this

chapter focuses on RGB cameras only, which offers the advantage of a considerable reduction

in equipment cost.

6.1.1 2D Pose Detectors

2D human pose estimators yield image coordinates of human anatomical keypoints in

an image for every detected person. Recent advancements in deep learning have led to a

significant improvement in the performance and accuracy of these models, surpassing the

previous approaches that relied on probabilistic and hand-crafted features [32]. Most of

these learning-based models [1, 95, 82, 174] rely on Convolutional Neural Networks. Among

the vast amount of 2D pose estimators, OpenPose [26] is one of the most popular. It

leverages part affinity fields for human parts association using a bottom-up approach. A

similar approach is followed by OpenPifPaf [97] and trt-pose1. Another widely known 2D

pose detector is HRNet [168], which can maintain high-resolution representations through

the detection process, claiming higher accuracy and spatial precision. One of the most

popular datasets used for training and evaluating these 2D models is COCO [114], containing

more than 100.000 annotated images.

6.1.2 Position and Orientation Detection

Accurate localisation and orientation estimation are also crucial for human-aware

navigation, as demonstrated in the previous chapter. For instance, the orientation of pedes-

trians’ velocity vectors is used in [120] to enable a robot to navigate crowded environments

while adhering to constraints defined by proxemics. In this case, the orientation vector is

assumed to be parallel to the movement. Although this is often the case, such a strategy

becomes noisy when people move slowly. The orientation of humans’ joints is also used

in [25] to classify motion patterns in human activities. A total of 25 keypoints of the human

1Project URL: https://github.com/NVIDIA-AI-IOT/trt_pose
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body are used to create a feature vector that is input to an SVM to classify motion types

(e.g., jump, squat, run).

Although a significant number of exceptions exist (e.g.,[161, 184, 108]), orientation and

other social cues are typically obtained using the aforementioned three-stage pipeline for

multi-camera and multi-person setups. The final stage algorithm is often implemented

employing elementary trigonometry, taking into account the coordinates of the shoulders

or hips[56]. For example, in [39], the calculation is performed using the cross-product of

vectors extending from the head to the right and left hips, respectively.

In order to address the limitations of handcrafted equations when dealing with missing,

noisy, and redundant data, some studies adopt a machine learning-based approach. For

instance, both [161] and [184] utilise Histograms of Oriented Gradients (HOGs). In [161],

RGB-D HOGs were employed to provide discrete angle estimations. The research presented

in [159] also offers orientation estimation based on a set of angle ranges using HOGs for

RGB images only. This method generates feature vectors that are incorporated in logistic

regression, enhancing the results obtained by [161]. In [184], a similar approach is conducted,

also using discrete angles. While achieving high precision of less than < 0.1◦, this precision

is attributed to the subsequent use of a Kalman filter to obtain static orientation. The

study in [108] employs RGB-D and IR images with IR trackers to train a single-camera

Convolutional Neural Network (CNN), providing continuous angle estimation and attaining

a mean absolute error of approximately 6◦.

The accuracy of the work conducted in Section 6.2 for position and orientation estimation

is slightly below that of [108]. Nonetheless, the proposed methodology in this chapter not

only estimates orientation but also determines the 3D coordinates of the torsos without

necessitating the use of relatively costly RGB-D cameras.

6.1.3 Full 3D Human Pose Estimation

Regarding the 3D pose estimation problem, fuelled by the remarkable progress in 2D

estimations, numerous studies have attempted to leverage these models to estimate 3D poses

from 2D points [186]. Many of these approaches derive 3D human poses from monocular

views [111, 148, 121, 138, 124]. However, they are constrained by the inevitable reality
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that monocular depth estimation is an ill-posed problem, as a single 2D projection can

yield multiple potential 3D poses. Multi-camera systems can significantly reduce this

ambiguity and enhance robustness against occlusions and noise. Nevertheless, multi-view

human pose estimation involving multiple people introduces the challenge of matching

each individual’s set of keypoints among images from different cameras. Previous research

has tackled this issue using algorithms based on appearance and geometric information [46,

18]. Dong et al. [46] construct affinity matrices based on the appearance between two views

and utilise them as input to their model to infer the correspondence matrix.

Upon resolving the cross-view correspondences, there are several techniques to merge

the information from the different views to extract the 3D pose. Classical approaches

predominantly rely on epipolar geometry, triangulating the 3D points from 2D points [8,

18, 92]. The pictorial structure paradigm was extended to 3D in [17] to address multi-

human pose detection. However, the model does not identify complete skeletons in cases of

occlusion, and it assumes prior knowledge of the number of people in the scene, which is

unrealistic [177]. Other studies confront the problem using prediction models based on deep

learning and CNNs [177, 201, 145]. For instance, VoxelPose [177] discretises the 3D space

into small cubes called voxels. Utilising this representation, the 2D heatmaps detected from

all views are projected into a shared 3D space, and two 3D convolutional models are applied.

The first model generates detection proposals for each individual, while the second estimates

the positions of the keypoints for each proposal. This method avoids establishing cross-

view correspondence based on low-quality 2D poses. Ye et al.[201] introduce an accelerated

version of VoxelPose that circumvents the use of 3D convolutions, albeit with slightly inferior

results. Initially, they re-project the aggregated feature volume, acquired similarly to[177],

to the ground plane (xy) by implementing max-pooling along the z-axis. Subsequently,

they employ a 2D-CNN network over the xy-plane to identify individuals and generate a 1D

feature vector in the z-axis for each detection. Lastly, they apply a 1D-CNN to that vector

to obtain the final 3D pose estimation. These modifications allow their model to achieve

results approximately ten times faster without compromising accuracy. Another noteworthy

study by Lin et al.[113] utilises a plane sweep stereo technique to simultaneously tackle the

challenges of multi-view fusion and 3D pose estimation. It is important to mention that

all these models are camera-configuration specific and need scenario-specific datasets with
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Qualitative features Multi-camera Multi-person Self-supervised

Tu et al. [177] ✓ ✓ ✗

Ye et al. [201] ✓ ✓ ✗

Wo et al. [194] ✓ ✓ ✗

Lin et al. [113] ✓ ✓ ✗

Biswas et al. [20] ✗ ✗ ✓

Kundu et al. [100] ✗ ✗ ✓

Srivastav et al. [166] ✗ ✓ ✓

Model in Section 6.3 ✓ ✓ ✓

Table 6.1: Qualitative comparison with literature

accurate annotations. Addressing this second issue constitutes the primary objective of

the work presented in Section 6.3. The scarcity of such datasets can be attributed mainly

to the expensive equipment required and the need for a controlled environment to record

data. Examples include the Human3.6M dataset[80], featuring over 10,000 annotations

from 1,000 images, and the CMU Panoptic dataset [84], containing 5.5 hours of video from

various angles and 1.5 million 3D annotated skeletons.

Kocabas et al. [92] introduce an approach that is conceptually related but methodologi-

cally distinct from the work under consideration. They employ self-supervised learning for

3D human pose estimation by calculating the loss using epipolar geometry from multiple

cameras’ 2D pose estimations. However, their method only provides the 3D pose for a single

individual in the scenario, using a combination of two CNNs.

It is worth mentioning multiple works in the literature addressing the problem with the

use of GNNs. For instance, works such as [197, 74] achieve promising results from monocu-

lar views. Wu et al. [194] propose a solution for multi-view and multi-person 3D estimation

using supervised learning. They utilise a GNN for both cross-view correspondences (an ap-

proach similar to the one presented in 6.3) and the final 3D pose estimation. The graphs are

constructed by converting each detected keypoint into a graph node and using the natural

connections in the body to create the graph edges. The GNN then applies a regression to

the node features to determine the 3D coordinates of the body joints. The main limita-
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tion is that the training of these networks requires datasets with accurate 3D ground truth

annotations.

Due to the significant advantages of avoiding 3D annotations (i.e., making datasets more

affordable in terms of cost and effort, which facilitates the collection of larger datasets), self

or semi-supervised learning methods have been proposed in numerous studies [47, 138,

143, 92, 20, 100, 166]. These methods either utilise only a single view or are limited to

estimating the 3D pose of a single individual. Thus, to the best of my knowledge, the work

in Section 6.3 is the first multi-camera 3D Human Pose Estimation method that supports

multiple individuals and does not require ground-truth data. Table 6.1 presents a qualitative

comparison of the most relevant and recent works in the literature, demonstrating that the

model developed in Section 6.3 is the only one that satisfies all three characteristics.

6.2 Multi-camera Torso Pose Estimation

This section addresses the problem of estimating a person’s torso pose from a set of cameras.

In this case, the pose is defined as the person’s torso position on the floor plane and their

orientation with respect to the vertical axis: (x, y, α). The system should be able to cover

spaces large enough to require multiple cameras attached to the walls with overlapping

fields of view.

This project employs both real and synthetic training data to generate a large dataset

in a relatively short time, saving a considerable amount of resources. The hypothesis is

that the data augmentation coming from simulation will contribute to improving results

compared to training solely with real data. The first row of Figure 6.1 displays images of

the real environment, while the second row shows a representation in CoppeliaSim [149]

of three views of the environment where the system has been tested. Both systems have

the same camera setup with identical calibration, using an AprilTag in the same relative

position as a reference for the origin of coordinates.

As previously mentioned, the processing pipeline illustrated in Figure 6.2 is comprised

of three key phases. Initially, images are acquired and processed using OpenPifPaf [96]. It

should be noted that any other 2D detector can be utilised during this step. The output
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data from this phase, a set of detected skeletons from different cameras, is passed on to

the subsequent phase, where skeletons corresponding to the same person are matched and

grouped. These groups are then supplied to a GNN, which generates the final output. The

Figure 6.1: Example of real images (first row) and images obtained from the simulator (second row).
The resolution employed in the experiments was 640x480. Skeleton detection is visualized with green lines,
highlighting the keypoints and connections between them for both real and simulated images.

Figure 6.2: Schematic diagram displaying the workflow from image capture via cameras to the prediction
of position and orientation. The contributions of this project are encapsulated within the green rectangle in
the diagram.
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utilization of a GNN in this context is due to its adaptability to potential missing parts

detected by the 2D detector, owing to the input dimension flexibility inherent in these

networks. Moreover, the graph structures following the body’s anatomical form introduce

a degree of bias into the network. This bias arguably aids in a better comprehension of the

input data, potentially leading to improved results. The remainder of this section explains

these phases in more detail.

Image acquisition and skeleton detection: The acquired images are provided to

the 2D detector to obtain the skeleton data. Figure 6.1 displays the detected skeletons with

green lines for both real and simulated data. For each frame, an observation Ψ {pi, ri, ti} is

generated and supplied to the next stage, where:

• pi represents the set of people detected in that frame, each holding a list of up to 16

joint coordinates. If using RGB-D cameras, the depth of each joint from the camera

is computed using the depth image plane.

• ri corresponds to the RGB Region of Interest (ROI) associated with the bounding

box of the skeleton.

• ti indicates the acquisition time of the frame.

Match observations to people: The proposed method for matching observations

to people based on geometric cues is not the primary focus of this section; it is merely

a suggested approach to solve the problem of cross-view correspondences in this project.

However, this method has not been tested and all the experimentation in this section has

been done with just one person in the scene. In the following section, a novel solution for

this step will be introduced, which aims to improve the matching process and provide better

results in the context of multi-camera human pose estimation. Please refer to Section 6.3.1

for a detailed explanation of the new approach and its potential advantages.

A stream of Ψt, t ∈ N, observations is generated from the skeleton detectors. A state

machine manages the creation, update and removal of a set of data objects representing

people. Each observation can either create a new person, update an existing one or be

dismissed as noise. Before a new person is accepted, he or she has to receive successful
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matches for at least 2 seconds.

An observation matches an existing person if their distance d(oi, pj) is lower than a

certain threshold dmax, taken here as 0.65 in the [0, 1] range. The distance d is defined as

the median of the distances between the observation and the recent history of the person:

d = medt {B (h(oi), ht(pj))} where B is the Bhattacharyya distance [86], h(oi) is the ob-

servation’s 2D histogram computed over the hue and saturation planes of the person’s ROI

and ht(pj) is the 2D histogram of person pj at time t, where t goes from the last observation

to Q samples in the past. Other distances and thresholds have been tested with no better

results. The removal of unseen people occurs after 2 seconds without receiving any matches.

In the next stage, a set S of observations from a person is fed to the GNN to obtain

a tuple of target coordinates (x, y, α) representing the pose of each torso. This set S is

extracted from the person’s history as:

S := {o | oki ∈ Op ∧ k ∈ {1, 2, 3}}

where oki is the past matched observation i by camera k and Op is the set of past time-

ordered observations of person p. S is thus the set of the most recent matched observations

obtained from different cameras.

GNN processing: The GNN is designed to use the information obtained from each

camera to estimate the position and orientation of a human torso, even with a partial

view, yielding more accurate results when more data is available. This stage is the main

contribution of the work described in this section. During this phase, two GNN models

were tested to tackle the challenge. Specifically, a Graph Attention Network (GAT) and a

Relational Graph Convolutional Network (RGCN) were used (see Chapter 3 for more details

about these variants). As can be observed in Fig. 6.3, the total number of visible joints

is limited in some cases, which makes it difficult to estimate the position and orientation

of the person using analytical methods. Instead, as the results suggest, the GNN models

effectively leverage the available data to generate more reliable estimates of the human pose,

taking into account the partial views from different cameras.

GNNs are particularly well-suited to handling structured data of varying sizes and miss-
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(a) Person detected by the three cameras. (b) Person partially detected by a single camera.

Figure 6.3: Examples of graph representation of the information obtained by the multi-camera system.

ing nodes (body parts in this case), as discussed in Chapter 3. In the current work, an input

graph is created for each set of skeletons associated with the same person. To do this, first,

the joints detected by each camera are used to generate separate graphs corresponding to

different views of the same skeleton. These graphs contain a node representing the body

and additional nodes for all the available body parts (as provided by the 2D detector). Each

part is connected not only to its kinematic parent but also to its mirrored body part. The

nodes representing the body are referred to as body nodes. Finally, all available body nodes

(one per view) are connected to an additional node that aggregates information from the

previous nodes, which we’ll call the superbody node. Fig. 6.3 illustrates two graphs with the

body parts captured by the three-camera setup.

The feature vectors of the nodes have 25 dimensions (28 if using RGB-D cameras). The

feature vector h for each node i is built by concatenating one-hot encodings and metric

information:

hi = (ti|ci|pi|si)

• Node type one-hot encoding (ti): This encoding represents the node type and has a

length of 19 because OpenPifPaf can detect 17 body parts and we use two additional

types for the body and superbody nodes. If another 2D detector is used, the length of

this vector would need to be adjusted accordingly.

• Camera one-hot encoding (ci): This one-hot encoding represents the camera that

captures the skeleton. In our experiments, it has a length of 3, as that is the number

of cameras used. It is zero-filled for the superbody node. To accommodate a different
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number of cameras, the length of this vector must be adjusted accordingly.

• Coordinates vector (pi): It has a length of 2 (5 if using RGB-D cameras, adding

(x, y, z)) and stores the coordinates of each body part. Body and superbody nodes

have zeros in all the elements of this vector. The image coordinates provided by

OpenPifPaf are normalised so that they are within the range [−1, 1]. If using W ×H

cameras resolution, the normalisation would be:

p′x = (x−W/2)/(W/2)

p′y = (H/2 − y)/(H/2)

The 3D coordinates are only provided if using RGB-D cameras. They are also nor-

malised to be in the range [−1, 1], based on the size of the room.

• Score (si): This is a single element field that provides the certainty of the measure

gathered by OpenPifPaf. It is only used for body part nodes, zero otherwise.

The model is trained so that the output feature vectors are 4-dimensional and correspond

to x, y, sin(α) and cos(α) for the superbody node in the last layer. The actual angle α is

then reconstructed from its sine and cosine.

6.2.1 Dataset Generation

As the models are scenario-specific, they need to be trained with data that incorporate

the camera calibration information. Datasets can be created using any simulator that can

animate human avatars, provide their ground-truth positions, and offer RGB(D) streams,

allowing OpenPifPaf or similar software to detect people and their skeletons. To create

an accurate virtual replica, the intrinsic and extrinsic parameters must be estimated (see

Appendix C). The accompanying software uses an augmented reality tag placed on the floor

(so that it can be detected by multiple cameras) and guides users through the calibration

process (see Figure 6.1).

Once the cameras are calibrated, new datasets can be easily produced by generating

paths for the simulated avatars in the virtual model. Using this procedure, a large amount
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of data can be gathered with limited effort. However, simulated data might be insufficient

depending on the calibration accuracy, as small calibration errors can lead to a significant re-

duction in estimation accuracy. For this reason, the dataset generated from the simulations

can be extended with real data, recording an actual human moving around the environment.

In the experiments, to store ground-truth information, the human was equipped with an

Intel RealSense tracking camera on their chest, which provides under 1% closed loop drift.

The camera pose at the start coincides with the global reference frame of the room (on top

of the AprilTag). Thus, the camera pose directly corresponds to the ground truth pose.

Combining both, simulated and real data, a final training dataset with more than 20,000

samples was created. Specifically, 19833 samples of the dataset are simulated and 631 are

real. The final dataset is provided in JSON format (available in the public repository2).

Each item in the sequence is itself a sequence, having one skeleton for each of the

cameras with which a skeleton was detected. In our setup, the number of skeletons for

each measurement can be 1, 2 or 3, depending on the number of cameras detecting each

person. Each skeleton in the dataset has a ground truth vector (containing the x, z, and

yaw of the person), a camera identifier and a timestamp. For each joint the dataset provides

the 3D coordinates, the image coordinates of the joint and a certainty value provided by

OpenPifPaf). The 3D coordinates of the joints are ignored for the RGB-only experiments.

6.2.2 Experimental Results

The experimental setup consists of three Intel RealSense 415 depth cameras, with extrinsic

parameters calibrated concerning a common reference system on the floor (RGB-D cameras

are used to enable result comparison using RGB and RGB-D images). Further information

about the cameras can be found in Appendix A, and details about the calibration process

are available in Appendix C. Once the model is trained, it can estimate 3D poses using only

joints’ image coordinates, without requiring depth data - although it can optionally be used

to enhance results. You can find the code for this project in a public repository3.

The accuracy of the proposed multi-camera human torso pose estimation system was

evaluated through several experiments. Three different sequences of ANN layers were em-

2https://github.com/vangiel/WheresTheFellow
3https://github.com/vangiel/WheresTheFellow
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ployed in each experiment: 1) GAT, 2) RGCN, and 3) per-camera Fully Connected layers

(FC), shared across cameras, followed by concatenation and a further sequence of FC layers

(MLP). The MLP architecture is provided with 0s and 1s values alongside the normal input

to indicate missing data.

All three architectures were trained using the dataset described in section 6.2.1 (DS1).

Each architecture underwent multiple training sessions with different combinations of hy-

perparameters applied in each session to identify the most optimal ones (random search

hyperparameter tuning). Moreover, a second training dataset (DS2) consisting solely of

simulated data was generated. The three architectures were also trained using this second

dataset, following the same hyperparameter tuning process. For GNNs, various values for

the number of layers, number of hidden units, attention heads (for GAT only), number of

bases (for RGCN only), and activation function of each layer were tested. These values

were randomly generated to cover a wide range of combinations. Likewise, for the MLP,

different depths and widths of the hidden layers were explored.

In addition to the two training datasets, two more datasets were generated from real

data: one for development, consisting of 225 samples, and another with 283 samples for

testing purposes. The collection of larger datasets was not possible due to the COVID-19

pandemic.

Since RGB-D cameras were available, both 2D image coordinates and 3D positions

were available for each perceived joint. However, to make RGB-D cameras optional, each

architecture was trained using two versions of the data (with and without 3D information).

The first version includes the 3D and image coordinates of the body parts in the feature

vectors, while the second version only considers the image coordinates, making it suitable

for multi-camera systems composed of RGB cameras.

Table 6.4 presents the Mean Squared Error (MSE) of the test dataset for the best

model of each architecture, using the 2D-only and 3D versions of the data and the two

training datasets. It is evident that the two GNN architectures outperform the MLP in all

combinations of training datasets and feature types except for one case in Table 6.3.

As anticipated, using a training dataset with only simulated data (DS2) leads to a
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decrease in accuracy in all cases, with a more pronounced effect on the MLP. This becomes

more evident with the 2D version of the data, impacting both orientation (see orientation

MSE in table 6.2) and position estimation (see position MSE in table 6.3). However, when

using the training dataset that combines simulated and real data (DS1), relying on 2D-only

features does not significantly impact the results.

MLP RGCN GAT

DS1 - 3D features 0.024 0.018 0.019

DS1 - 2D features 0.026 0.02 0.021

DS2 - 3D features 0.083 0.080 0.038

DS2 - 2D features 0.077 0.058 0.066

Table 6.2: Orientation MSE for the two training datasets

MLP RGCN GAT

DS1 - 3D features 0.0011 0.00079 0.00092

DS1 - 2D features 0.0012 0.0016 0.0011

DS2 - 3D features 0.0057 0.0021 0.0013

DS2 - 2D features 0.010 0.0064 0.0049

Table 6.3: Position MSE for the two training datasets

MLP RGCN GAT

DS1 - 3D features 0.010 0.0076 0.0083

DS1 - 2D features 0.011 0.009 0.009

DS2 - 3D features 0.037 0.033 0.016

DS2 - 2D features 0.037 0.027 0.029

Table 6.4: Global MSE for the two training datasets

To test the accuracy of the solutions, the output was compared with an analytical estima-

tion of the human pose based on the depth data. This comparison enabled us to determine

whether the application of deep learning techniques to this problem yielded a more effective

solution compared to a purely analytical approach. The position and orientation of the

human in the analytical estimation were computed as follows:

• Estimated position: For each camera, the position is individually estimated as the

median of the 3D positions of the joints, with the median being used to mitigate the

impact of any outliers. The final position is computed by averaging the estimations

of all the cameras perceiving at least three joints of the human.

• Estimated orientation: For each camera, the orientation is computed from the posi-

PhD Thesis, Aston University 2023. 152



DANIEL RODRIGUEZ CRIADO CHAPTER 6. HUMAN POSE FROM CAMERAS

tions of pairs of symmetric joints. Specifically, the shoulders and hips are used. The

final orientation is obtained as the average of the estimations of the different cameras.

If none of the cameras perceives a symmetric pair of joints, the estimation of the

previous instant is maintained.

Figure 6.4: Comparison of the network prediction and the analytical estimation of the pose with the
ground-truth for every sample of the test datasets.

The comparison between the results obtained from the analytical and the learned esti-

mators shows that learning-based solutions outperform the analytical method, particularly

when they have access to the depth channel of the images, especially for orientation esti-

mation. This can be observed in Figure 6.4, which depicts the estimation of the position

and orientation for every sample of the test dataset using the analytical method (red dot-

ted line) and the RGCN-based architecture trained using 3D data with the dataset DS1

(blue dashed line). As can be seen, the difference with the ground truth (green solid line)

is smaller in the estimation obtained by the GNN, which is especially remarkable in angle

prediction. This observation can be extended to the remaining architectures trained with

DS1 (Figure 6.5). In fact, the mean absolute error (MAE) of the best GNN architecture

considerably outperforms the analytical method, providing a mean absolute angle error

below 10◦10◦10◦.

The exclusive use of simulated data for training leads to a deterioration of the results,

which can be seen in Figure 6.6. However, the use of 3D information in the data (3D version

of DS2) still outperforms the analytical estimation for one of the GNN architectures in

position and orientation.
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Figure 6.5: MAE of the position (x and y) and orientation for the test datasets using the training dataset
DS1, composed of simulated and real data.

Figure 6.6: MAE of the position (x and y) and orientation for the test datasets using the training dataset
DS2 composed entirely of simulated data.

6.3 Multi-Person andMulti-Camera 3D Pose Estimation from

Unlabelled Data

This section details the development of a multi-camera and multi-person HPE system capa-

ble of predicting 3D positions for principal anatomical keypoints of the human body using

RGB cameras. The project presents novel solutions that address some limitations of the

system discussed in Section 6.2. Beyond detecting complete skeletons, this advanced sys-

tem can be trained with unlabelled data through a self-supervised approach, circumventing

the necessity for costly equipment and the laborious task of data labelling. Moreover, it

introduces a learning-based solution for the pipeline’s second step, employing a GNN and

achieving exceptional results as outlined in Section 6.3.2. The proposed method is com-

prehensively described in Section 6.3.1, while Section 6.3.2 presents experimental results

comparing the performance of state-of-the-art methods on a public dataset.
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Figure 6.7: Two last stages of the pipeline of the proposed system. The correspondences between the
input skeletons in the different views are estimated by a GNN. This information is leveraged by an MLP to
provide the final 3D poses.

6.3.1 Method

As already established, multi-view and multi-person systems usually comprise a three-stage

pipeline: a) a skeleton detector, b) a multi-view skeleton matching model, and c) a pose

estimation model. Given the highly efficient solutions available for the pipeline’s first stage,

this work does not propose any new alternatives. Indeed, this system is not dependent

on the specific skeleton detector employed. The multi-view skeleton matching and the

pose estimation network constitute the primary contributions of this section. Figure 6.7

illustrates these two pipeline stages at inference time, which take a set of detected skeletons

per view as input that can be obtained using any skeleton detector. The code is accessible

at https://github.com/gnns4hri/3D_multi_pose_estimator.

System Calibration

The approach presented in this section is not limited to a specific number or arrangement

of cameras. However, it necessitates a consistent camera configuration during both dataset

collection and final inference for pose estimation. The sole exception is that the system

permits the set of cameras utilised during inference time (Ci) to be a subset of those

employed during training (Ct). In this scenario, only the cameras in Ci need to maintain

the same configuration as during training. If desired, the remaining cameras in Ct can be
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removed from the system once training is complete. This flexibility offers the notable benefit

of enhancing inference time accuracy when Ct can be larger than Ci (e.g., in mobile robots

that require a small set of cameras during inference but can utilise additional cameras for

training). This facilitates better imagination of the 3D positions of keypoints undetected by

cameras in Ci during inference time thanks to a better reconstruction of the labels during

training.

The initial step in setting up the system involves calibrating the intrinsic parameters of

all available cameras, as well as their extrinsic parameters relative to the desired global frame

of reference. Using these parameters, the projection matrices of all cameras (T c; ∀c ∈ Ct)

are generated. These matrices are employed during the training and inference phases of the

two proposed neural networks, as outlined in the following Sections. For further details on

the calibration process, refer to Appendix C.

Skeleton Detection

For training purposes, once the system has been calibrated, a dataset tailored to the cam-

eras’ configuration (Ci and Ct) must be collected. The HPE’s training operates under the

assumption that the training dataset has been generated with only one person present in

the environment at a time. This constraint does not apply to inference time, where the

number of individuals is not theoretically limited. Detected skeletons are represented as

a list of keypoints, defined by their 2D image coordinates, an identifier for each skeleton

keypoint, and a certainty value for the detection. Datasets comprise sequences of samples,

each containing a list of detected skeletons per camera.

As previously mentioned, our proposal is not restricted to a specific detector, irrespective

of the number of keypoints provided for each skeleton. The number of keypoints merely

determines the size of the input features for each network, rendering it a simple configuration

parameter.

Skeleton Matching

After detecting skeletons in various views, a critical step involves identifying the skeletons

corresponding to the same individual. Given that the order of detections is irrelevant and

this HPE aims for the number of views and people to be variable, we train a GNN model to
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estimate the correspondence between all views. GNNs are well-suited to this task as they

are order invariant and accommodate a variable number of input nodes.

The GNN model receives as input an undirected graph G = (V,E), where V is the set of

nodes, and E is the set of edges. The set V is composed of two different types of nodes that

we term detection nodes and match nodes. These two types of nodes are the elements of Vd

and Vm respectively, such that V = Vd ∪ Vm. Each detection node represents a 2D skeleton

detected in one of the views used at inference time (i.e. a view c ∈ Ci), while a match node

represents a possible match between two different detections. It is worth noting that only

the cameras in Ci are used because we are only interested in these cameras at inference

time and including the rest of the cameras in Ct would not add any valuable information to

this end. For each pair of detection nodes vi, vj ∈ Vd such that vi and vj belong to different

views, there is a corresponding match node vk ∈ Vm. The edges in E connect the match

nodes to their corresponding detection nodes. Thus, for each match node vk ∈ Vm linking

two detection nodes vi, vj ∈ Vd, there are two edges (vk, vi) and (vk, vj). Therefore, the

input graph G can be represented as follows:

G = (Vd ∪ Vm, (vk, vi) ∪ (vk, vj)) (6.1)

where vi, vj ∈ Vd and vk ∈ Vm correspond to the match node between detection nodes vi

and vj .

Each node (detection or match) contains a feature vector (x) with Nk × Nc × 10 + 2

elements, where Nk and Nc are the numbers of keypoints and cameras respectively. Two

of these elements denote a binary 1-hot encoding indicating if the node is a detection or a

match. In the case of a match node, all other dimensions are fixed to zero. In the case of

a detection node there is a 10-tuple for each camera-keypoint combination, each of which

consists of:

• a flag indicating if the keypoint has been detected,

• the pixel coordinates if the keypoint is visible (2 zeros otherwise),

• a value within the range [0, 1] indicating the certainty of the detection of the keypoint
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(zero if the keypoint is not visible),

• six elements encoding the 3D line passing through the origin of the camera and the

keypoint (image plane coordinates) in the global frame of reference (specified as a 3D

point and a 3D direction vector).

Given the input graph G = (V,E) and the feature vectors of the set of nodes (xi ∈
Rd, for vi ∈ V ), a GNN produces an output graph G′ = (V,E) with the same structure as

G, but different feature vectors for each node (yi ∈ Rd′). The GNN is trained to predict

whether each match node vk ∈ Vm corresponds to a true match. Thus, the matching is

formulated as a binary classification task, where the target labels are {0, 1} for non-matches

and matches respectively. To ensure that each output of the GNN is within the range of

[0, 1], we use the Sigmoid activation function in the output layer. Consequently, both the

binary cross-entropy (BCE) loss and the mean squared error (MSE) loss are suitable for

computing the loss during the training of the GNN. However, based on experimental results,

we observe that the GNN trained with the MSE loss yields slightly better performance than

the GNN trained with the BCE loss. Therefore, we define the GNN loss in terms of the

MSE loss:

LSM = − 1

|Vm|
∑

vk∈Vm

(yk − ŷk)2 (6.2)

being yk ∈ {0, 1} the target label for node vk ∈ Vm, and ŷk ∈ [0, 1] the predicted probability

that node vk corresponds to a match.

A primary limitation of learning-based approaches employing supervised learning lies in

dataset generation, which necessitates annotation with ground truth. For this specific prob-

lem, if the dataset contained multiple skeletons simultaneously, manual annotation of their

cross-view correspondence would be required. To circumvent this laborious process, the raw

training dataset comprises a set of sequences with single individuals moving within the envi-

ronment, one at a time. These sequences can then be merged into a single processed dataset

containing ground-truth labels, constructed by aggregating data from multiple individuals.

Given that, each frame contains only one person, 2D detections matches can be readily
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(a) Individual graph for person 1. (b) Individual graph for person 2.

(c) Final graph representing two persons.

Figure 6.8: Generation of a sample of the dataset. Graphs of individual persons are generated first assigning
a score of 1 to the match nodes connecting the views (green nodes). Then a final graph is generated from
the individual ones adding match nodes with a score of 0 (red nodes).

identified. Using this data, separate graphs are generated for each individual, with all match

nodes assigned a maximum score value (refer to Figures 6.8a and 6.8b). The graphs of

individual persons are then combined by adding match nodes with a score of 0, connecting

pairs of detections from different individuals, as illustrated in Figure 6.8c. By following

this procedure, the target label yk of each match node vk ∈ Vm in the graphs composing

the training set is generated, enabling GNN training in a pseudo-supervised manner. The

number of individual graphs combined is randomly sampled from a uniform distribution

for each element in the dataset, with a minimum of one and a maximum equal to the total

number of sequences employed in dataset generation.

3D Pose Estimation

Having identified the different views of each person, an MLP is employed to estimate the

3D coordinates of the keypoints for each person. The input features of the model consist

of the concatenation of 14 features per keypoint and camera. Consequently, if the skeleton

detector identifies up to 25 keypoints and the system utilises three cameras during inference

time (|Ci| = 3), the input feature vector dimension would be 14 × 3 × 25, amounting to a
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total of 1050 dimensions. The 14 features per keypoint include the 10 features delineated

in the previous section for skeleton matching, along with four additional features related

to an initial 3D estimation. Specifically, if a keypoint of an individual is detected by two

or more cameras, its 3D coordinates are reconstructed via triangulation for each pair of

cameras, and an initial estimation is computed as the centroid of the obtained 3D points.

This estimation is incorporated as input using three of the four new features. The final

feature is employed to indicate the availability of the estimated 3D. It is set to 1 if there is

more than one view of the keypoint and 0 otherwise.

Utilising the aforementioned information per keypoint and camera, the network estimates

the 3D coordinates of all keypoints in the global frame of reference. Thus, assuming that

the network predicts the position of 25 distinct keypoints, the output vector dimension is

3 × 25 = 75. An MLP query is performed for each person.

The training process follows a self-supervised learning approach, which represents the

main advantage of this approach. This way, there is no need to use a ground truth to

compare the output, since the loss function only uses the data from the skeleton detectors.

However, calculating this loss is not trivial, since the network infers 3D poses from 2D image

coordinates. The approach to solving this problem is to project the 3D coordinates of the

keypoints predicted by the network into each camera used for training (Ct). The trans-

formation between global and image coordinates is done by using the projection matrices

(T c ∀c ∈ Ct) obtained during the calibration process. Using the projected coordinates and

the coordinates yielded by the skeleton detector, a measurement of the estimation error of

the network is obtained. This error defines the loss function that the network is trained to

minimise. More formally, assuming that the output of the network o is represented as a

vector of 3D positions corresponding to the estimation of the person’s keypoints coordinates:

o := (o0, o1, ..., oNk−1) (6.3)

with Nk the number of keypoints, a vector pc of image projected positions (pci ) can be

obtained for each camera as follows4:

4The conversions between homogeneous and standard coordinates are omitted for simplification
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pci = T c · oi ∀i ∈ [0, Nk) (6.4)

Using pc and the set of detected keypoints (Sc = {sck}) for each camera c, the projection

error e is computed as

e =
∑

c∈Ct

∑

sck∈Sc

d(pck, s
c
k) (6.5)

being d(·) the Manhattan distance between the projected and detected points.

Applying equation 6.5 to each sample of the dataset D, the final loss is calculated using

the mean squared error:

L3D =
1

|D|
∑

d∈D
e2d (6.6)

being ed the result of equation 6.5 for the sample d.

Figure 6.9 depicts the process to compute the self-supervised loss, assuming 25 keypoints,

4 cameras in Ct, and 3 cameras in Ci. It can be observed that the loss computation utilises

detections from all cameras in Ct but only the cameras in Ci are used as network’s input.

Consequently, in the aforementioned example, the model receives detections from only three

of the four cameras at inference time. However, even though the fourth camera would not

be used at inference time, our HPE would still exploit what was learned from it at training

time.

Data augmentation

Data augmentation is applied to extend the data used for training, to increase the variety of

situations, and to increase the robustness against partial views. Specifically, for each original

sample of the dataset, which we refer to as seed samples, several samples are generated

removing views. Given a sample s comprising data obtained from n different views (s =

d1, d2, ..., dn), m new samples can be generated by selecting subsets of the views. The subsets
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Figure 6.9: Representation of how the 3D pose estimation network training loss is computed in a setup
with 4 cameras in Ct and 3 cameras in Ci.

are chosen randomly from a uniform distribution in the range of all possible combinations

that can be obtained with the different number of views (from 1 to n). For example, suppose

a seed sample s contains data from 5 views (s = {d1, d2, d3, d4, d5}), and we want to generate

3 new samples from s, the following samples could be randomly selected from the possible

view combinations and added to the dataset: {d1, d3, d4}, {d2, d5}, {d3}.

The new data generated by this process are used as the input of the two networks when

training. However, in the case of the pose estimation network, for each generated sample,

the whole data of its seed sample is used in the computation of the loss (equation 6.6), as

losing self-supervision information would not be beneficial.

6.3.2 Experimental results

The 3D multi-human pose estimation system has been evaluated using the CMU Panoptic

Studio dataset [84] and a dataset generated at Aston University’s Autonomous Robotics and
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Perception Laboratory (further information about this laboratory is available in Appendix

A) for the purpose of this research. The experiments presented in this section offer empirical

evidence that the proposed approach outperforms other state-of-the-art algorithms in terms

of speed, maintains comparable accuracy, and crucially, does not necessitate annotated

datasets. Lastly, evidence is provided to demonstrate that the proposed HPE can effectively

operate on an autonomous robot.

To conduct these experiments, the two neural models were trained for each dataset using

a train/validation/test split to avoid data leakage. For the matching model, a Graph Atten-

tion Network (GAT) is employed (see Chapter 3), with four hidden layers. The hidden layers

comprise [40, 40, 40, 30] hidden units and [10, 10, 8, 5] attention heads. LeakyReLU and Sig-

moid serve as activation functions for the hidden and output layers, respectively. The MLP-

based pose estimator features seven hidden layers with [3072, 3072, 2048, 2048, 1024, 1024, 1024]

hidden units, using LeakyReLU for the activation of the hidden layers and linear activation

in the output layer.

Datasets

To evaluate the proposed approach on the CMU Panoptic dataset and enable com-

parisons, the same sequences and views as VoxelPose [177] are used. Likewise, the four

sequences employed for testing VoxelPose are applied in these experiments. The data con-

taining the 2D skeletons’ information were obtained using the backbone model provided

in the VoxelPose project. This model allowed for the detection of the 2D coordinates of

humans’ keypoints from the images. However, the training strategy necessitates that each

data sample includes the information of only one person, so it was essential to arrange

the detection results to provide individual human data. To achieve this, the skeletons of

different views corresponding to the same human were identified using the ground truth of

the Panoptic sequences and grouped to obtain individual samples for each human.

As mentioned in section 6.3.1, the proposed approach assumes a fixed configuration of

cameras for both the training and inference phases. All the cameras must be calibrated

according to a global frame of reference before training. However, this requirement is not

strictly met in the Panoptic dataset, which results in some limitations when compared with

the ground truth. To illustrate the problem, table 6.5 displays the translation vector to
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the global frame of reference for the five selected cameras in two of the datasets. As can

be seen, there are significant variations between the positions of the cameras in the two

datasets, exceeding, in some cases, and for specific axes, 0.1m. This implies that each

sequence considers a different global frame of reference.

To address this limitation, the calibration file of one of the datasets (160224 haggling1) is

used for training, and, for testing, the ground truth of each test dataset is transformed from

the global reference frame of that dataset to the global reference frame used for training.

To apply this transformation, a specific camera serves as a common frame of reference for

all the datasets. Consequently, the ground truth is first transformed from the global frame

of reference of the dataset to the camera frame of reference and then from the camera frame

of reference to the global frame of reference used for training. Although this transforma-

tion partially resolves the problem of having different calibration data for each dataset, a

residual error remains due to minor variations in the intrinsic and inter-camera extrinsic

parameters in the Panoptic sequences. Despite this drawback, which impacts negatively

only our approach, the results are still comparable.

Sequence
160224 haggling1 160422 haggling1

Camera X Y Z X Y Z

HD03 2087.71 -1510.89 1780.99 2015.19 -1512.49 1789.8

HD06 -677.9 -3394.66 -1704.22 -641.81 -3398.11 -1783.39

HD12 -76.23 -2392.45 2552.27 -173.19 -2395.36 2494.95

HD13 -1840.95 -3393.29 143.76 -1860.28 -3393.9 28.87

HD23 2343.16 -1526.22 -1433.97 2372.17 -1527.83 -1417.28

Table 6.5: Translation (in millimeters) between each camera and the global frame of reference for two
sequences of the CMU Panoptic dataset.

The ARP Laboratory dataset was generated from 4 cameras attached to the walls

of the laboratory and 2 additional cameras mounted on a mobile robot. The robot was

static and located at a fixed position during the generation of the dataset. All the cameras

were calibrated in relation to a global frame of reference. A total of 18 video sequences

of single individuals moving were recorded. The sequences have variable lengths between

2′ and 39′. These sequences were used for training and testing separately the two models.

Two additional sequences with groups of 2 and 4 people were recorded to test the whole
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system. These test sequences have a length of 3, 43′ and 2, 58′, respectively.

Evaluation of the Skeleton-Matching Module

Since the goal of the skeleton-matching network is to group together the different views

of a person, given an unknown number of people, it can be considered a clustering model.

Therefore, the proposed matching technique can be evaluated using a set of clustering

metrics. Specifically, the following metrics have been used:

• Adjusted rand index (ARI) [78]: estimates the similarity between two clusterings

according to the number of pairs belonging to the same or different clusters. It is

adjusted using a random model as a baseline, ensuring a random clustering has a

value close to 0. This score ranges between −0.5 (discordant clustering) and 1.0

(perfect clustering).

• Homogeneity (H) [152]: measures the homogeneity of the clusters. A cluster is

considered homogeneous if it contains only members of the same class. It ranges

between 0.0 and 1.0.

• Completeness (C) [152]: measures the completeness of the clusters. A cluster is

considered complete if all the members of the same class are assigned to the same

cluster. It ranges between 0.0 and 1.0.

• V measure (Vm) [152]: harmonic mean between homogeneity and completeness.

This index quantifies the goodness of the clustering, considering both homogeneity

and completeness. It ranges between 0.0 and 1.0.

These metrics have been applied to several skeleton matching networks trained for dif-

ferent numbers of views using the two datasets described in the previous section. Table

6.6 shows the results for two, three, and five views using the four test sequences of the

CMU Panoptic dataset. For all the metrics, values close to 1 are obtained regardless of the

number of views, which means almost perfect scores in each of these metrics.

The effectiveness of the proposed skeleton-matching network was also evaluated using the

ARP Laboratory dataset. Two models, one with two views and the other with six views,
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No. of views ARI H C Vm

2 0.9875 0.9968 0.9925 0.9943

3 0.9977 0.9993 0.9981 0.9986

5 0.9941 0.9978 0.9937 0.9956

Table 6.6: Metrics of the skeleton matching network for the CMU Panoptic dataset.

were trained using ten of the eighteen sequences of single individuals. The models were

then tested on the remaining eight sequences, with a test dataset generated according to

the multi-person dataset generation process detailed in section 6.3.1. This process provided

the necessary ground truth to compute the evaluation metrics.

Table 6.7 presents the results obtained from 2000 samples in the generated dataset, which

contained varying numbers of persons ranging from 1 to 8. Similar to the CMU Panoptic

dataset, the evaluation metrics demonstrated outstanding performance of the network for

both the two and six views models. Furthermore, it is noteworthy that for both datasets,

the homogeneity values are nearly 1, indicating that the skeleton groups are predominantly

comprised of views from the same individual.

No. of views ARI H C Vm

2 0.9770 0.9966 0.9886 0.9923

6 0.9842 0.9974 0.9847 0.9905

Table 6.7: Metrics of the skeleton matching network for the ARP Laboratory dataset.

Evaluation of the Multi-Person 3D Pose Estimation System

The whole multi-person 3D pose estimation system has been evaluated for both, the CMU

Panoptic and the ARP datasets. For CMU Panoptic, the same metrics in [177] have been

used for comparative purposes:

• Mean per joint position error (MPJPE): mean distance (mm) per keypoint be-

tween detected and ground truth poses.

• Mean average precision (mAP): mean of average precision over different distance

thresholds (from 25mm to 150mm, taking steps of 25mm).

• Mean recall (mR): mean of recall over all the thresholds.
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• Time for persons’ proposals (tpp): the mean time required for generating persons’

proposals. In our approach, this time corresponds to the skeleton matching stage.

• Time for 3D pose estimation (t3Dg): mean time required for estimating the 3D

poses.

• Time for 3D pose estimation per human (t3Di): mean time required for esti-

mating the 3D pose of one person.

To facilitate a comparison with alternative methodologies, VoxelPose was trained using

the same ten Panoptic training sequences. Additionally, the performance of the pose estima-

tion model was compared with 3D poses derived through triangulation. More specifically,

for each pair of views corresponding to an individual identified by the skeleton matching

model, the 3D position of each visible keypoint was estimated by triangulating the 3D co-

ordinates of its respective 2D counterparts. In instances where multiple estimations were

procured (i.e. when a keypoint was visible from more than two cameras), the final 3D

position for the keypoint was calculated as the mean of individual estimations.

Regarding the proposed approach, three distinct versions of the test dataset were em-

ployed. In the first version (D-detected), the input skeletons contained 2D coordinates of the

keypoints detected by VoxelPose’s backbone skeleton detector. In the second version (D-

projected), the 2D positions of the detected keypoints were substituted with the projected

coordinates of the ground truth 3D keypoints. Lastly, in the third version (D-average),

the 2D positions of the keypoints were computed as the mean between the detected and

projected 2D coordinates.

The main reason for using these 3 versions stems from the significant discrepancy between

the detected 2D keypoints and those acquired by projecting the ground truth 3D skeletons.

This observation is evident in Table 6.8, which displays the reprojection error of the ground

truth for the three datasets. To create this table, the ground truth 3D was projected onto

the images of the five cameras, taking into account the calibration data used to train the

model, and compared with the 2D keypoints of the three datasets. As observed, substan-

tial differences exist among the reprojection errors when considering the three datasets.

As anticipated, the largest reprojection error occurs in the D-detected dataset, indicating
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discrepancies in the human body keypoints’ positions between the skeleton detector model

and the Panoptic datasets’ ground truth. Furthermore, certain disparities are evident be-

tween the reprojected ground truth and the keypoint positions in the D-projected dataset.

These differences are related to the different calibration data of each sequence of Panoptic.

Specifically, as mentioned in section 6.3.2, the variations of the intrinsic and inter-camera

extrinsic parameters of the sequences produce a remaining error that is reflected in the

second row of table 6.8. In fact, compared with the D-avarage dataset, cameras HD03 and

HD23 present higher reprojection errors for the D-projected dataset.

Camera
Dataset HD03 HD06 HD12 HD13 HD23

D-detected 7.01 10.73 7.63 10.71 6.37

D-projected 3.81 1.08 2.19 2.28 4.74

D-average 3.65 5.12 3.92 6.06 3.69

Table 6.8: Reprojection error of the ground truth 3D for the three versions of the test dataset using CMU
Panoptic.

Table 6.9 presents a summary of the accuracy and time metrics obtained for VoxelPose,

triangulation, and the proposed method across the four test sequences of the CMU Panoptic

dataset. The final three rows of the table represent the performance of the proposed model

on the three dataset variations (D-detected, D-projected, and D-average).

Method MPJPE mAP mR tpp t3Dg t3Di

VoxelPose 17.97 96,61 97,41 135.92 169.99 50.53

Triangulation 22.63 76,99 85,10 32.56 10.06 2.99

Proposed-detected 26.06 89,25 92,63 31.67 19.65 5.83

Proposed-projected 17.84 96,23 97,76 31.96 19.94 5.89

Proposed-average 19.77 95,67 97,39 32.22 19.81 5.85

Table 6.9: Accuracy and time metrics of VoxelPose, triangulation, and proposed method using the CMU
Panoptic dataset.

In terms of accuracy, VoxelPose and the proposed model for the D-projected dataset

exhibit similar performance, despite the fact that the proposed model was trained with

detected data. Moreover, the results of the proposed model on the D-average dataset for

MPJPE, mAP, and mR are quite comparable to those of VoxelPose. The lowest value

of MPJPE is observed for the proposed model using the D-detected variation of the test

dataset. As previously mentioned, this is attributable to the discrepancies between the 2D
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detected and ground truth projected coordinates. Nonetheless, triangulation yields a similar

mean position error, even though its computation solely considers keypoints visible from

two or more cameras. Furthermore, triangulation performs the worst in terms of mAP and

mAR, primarily due to its inability to consistently yield complete pose estimations. Figures

6.10 and 6.11 provide examples of complete and incomplete results using triangulation.

Figure 6.10 displays instances where all keypoints for every individual in the scene can be

estimated by triangulation. In these cases, the estimated poses provided by the proposed

model (images on the left) and triangulation (images on the right) closely resemble the

ground truth poses (depicted in grey). Conversely, in Figure 6.11, some poses cannot be

fully determined by triangulation, as certain keypoints are not visible from two or more

cameras. In such situations, the proposed model offers complete estimates for all poses,

with minimal deviations from the ground truth.

Interestingly, the second scenario in Figure 6.11 presents a situation where the ground

truth is incomplete (green skeleton). In this case, it is evident that the proposed model

provides a realistic pose despite the scarcity of information.

Figure 6.10: Pose estimation results for 2 samples of the test sequences using the proposed model (left
images) and triangulation (right images). The ground truth is shown in grey. Triangulation provides
complete poses in the 2 samples.

Concerning computational time, VoxelPose requires an average of 305.91 ms for the
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Figure 6.11: Pose estimation results for 2 samples of the test sequences using the proposed model (left
image) and triangulation (right image). The ground truth is shown in grey. In these samples, triangulation
cannot provide complete poses due to an insufficient number of views for some keypoints.

entire estimation process, which is nearly six times longer than the duration needed by the

proposed method. The metrics of table 6.9 do not include the time necessary for skeleton

detection, which may vary depending on the specific detector employed. Nevertheless,

efficient solutions for detection do exist, such as trt-pose, which can perform at 251 FPS on

Jetson Xavier [192]. Moreover, skeleton detection for all views can be executed in parallel,

rendering the timing largely independent of the number of views. Thus, assuming skeleton

detection can be achieved at 30 FPS, the proposed method still operates more than three

times faster than VoxelPose.

Besides the aforementioned benefits regarding real-time execution, the proposed ap-

proach offers a more versatile solution to the problem compared to existing alternatives.

The fact that no ground truth is required to train the two models makes the proposed

method easily replicable, regardless of the space, organization and extension.

The proposed multi-person 3D pose estimation system has also been evaluated using

the ARP Laboratory dataset. As this dataset lacks ground truth, the accuracy metrics

employed for the CMU Panoptic dataset cannot be applied. Instead, the reprojection error
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Figure 6.12: Pose estimation results from the proposed proposal of four samples of the ARP Laboratory
multi-person sequences. From left to right, the results correspond to the models M1/6, M2/6, M6/6, and
M2/2.

of the estimated 3D for all cameras is utilised. Four distinct models were trained using

different sets of cameras at training and inference times: M6/6, which employs the six

cameras for both training and inference; M2/6, which utilises the six cameras for training

and the two robot-mounted cameras for inference; M1/6, which is trained with the six

cameras but only employs one of the robot’s cameras during inference; and M2/2, which

exclusively uses the two robot-mounted cameras for both training and inference.

Mean and median reprojection error for the four models and the six cameras (wall

cameras: W0, W1, W2, and W3; robot cameras: R0 and R1) using the two ARP Laboratory

sequences with 2 and 4 people are depicted in table 6.10. The lowest reprojection error for

the wall cameras is given by the model M6/6. This model is the most reliable since it
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uses data from all the views. Despite models M2/6 and M2/2 using the same cameras at

inference time, there are significant differences in their behaviour, which is reflected in the

lower reprojection errors of M2/6. Especially, it can be observed a very high error of M2/2 for

the camera W1. Such a large error is produced when there is limited visibility of a person

from the cameras used by the model. This is the case with the second sample of figure

6.12, where the model places the red skeleton far away from its actual position. Besides

this specific case, in general, the keypoints positions estimated by model M2/2 differ from

the estimates of model M6/6 as observed in that figure. In contrast, the model M2/6 can

estimate the pose of the person correctly, even though the input of both models is common.

Generally, the poses provided by the model M2/6 are very similar to those provided by the

model M6/6, as demonstrated by both figure 6.12 and the reprojection errors in table 6.10.

Finally, the model M1/6 shows outstanding results considering it only receives information

from one of the cameras of the robot (R0 ). The model is capable of predicting complete

3D poses, producing comparable reprojection errors to model M2/6
5.

The results of this experiment demonstrate that the proposed system is capable of pro-

viding good estimations with a reduced number of cameras, by considering the information

of an extended set of cameras during training. This is a significant advantage for its appli-

cation in autonomous robots, which is the focus of the next section.

Model
Camera M1/6 M2/6 M6/6 M2/2

W0 14.65 / 11.26 14.35 / 11.00 10.28 / 8.23 45.73 / 26.85

W1 11.84 / 9.28 12.02 / 9.49 8.28 / 6.80 290.63 / 15.62

W2 14.02 / 10.68 14.04 / 10.55 11.12 / 8.41 29.78 / 21.86

W3 12.18 / 9.29 12.36 / 9.40 7.88 / 6.40 31.94 / 19.24

R0 6.69 / 5.27 7.06 / 5.34 8.98 / 6.97 4.50 / 3.37

R1 9.05 / 6.83 7.79 / 6.07 9.49 / 7.51 4.50 / 3.38

Table 6.10: Mean and median reprojection error in the 6 cameras of the ARP Laboratory for 4 models
trained with different numbers of train and inference cameras.

5Bear in mind that, even though the reprojection errors are lower for M1/6 than for M2/6 in four of the
six cameras, non-visible people from camera R0 (see the third sample of figure 6.12) are not considered in
the error computation of model M1/6.
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Evaluation in a Mobile Robot

This experiment aims to show the application of the proposed system in a mobile robot

equipped with only two RGB cameras. The main goal is to endow the robot with the ability

to estimate the complete 3D human poses with enough accuracy to enhance the interaction

between them.

Since the robot does not stay in a fixed location, the only visual information it can use

is that provided by its two cameras. In the case of a mobile robot, triangulation is less

informative. The short baselines of robots’ stereo systems rarely provide complete poses,

and more importantly, they can cause small deviations in keypoints’ image positions to

produce large 3D errors. Nevertheless, using only the data captured by the two cameras to

train the pose estimation model does not provide reliable results, as shown in the previous

section. For this reason, we use the model M2/6, which only requires the information of the

two cameras on the robot at inference time, but uses the data from the four additional wall

cameras during training.

(a) Trajectory of the person’s ankles. (b) Distance from the initial position of the person to a subset of keypoints.

Figure 6.13: Experiment maintaining the robot in a fixed position while a person walks 1.5 meters towards
the robot. Only two RGB cameras are used at inference time. It is expected that the positions go from 0
meters to 1.5 meters in the graphs.

Two distinct experiments were conducted to validate the effectiveness of the proposal. In

the first experiment, the robot remains stationary, facing the location of a person situated

2.75 meters from the front part of the robot. The 3D pose of the individual is recorded
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as they walk towards the robot in a straight line, covering a distance of approximately 1.5

meters. Figure 6.13a illustrates the displacement of the person’s two ankles (magenta lines),

along with the position of the robot (dark blue cross). The green cross on the map represents

the initial position of the person, and the red one denotes the position of the global frame of

reference. Figure 6.13b displays the displacement in meters of the coordinates (projected on

the floor plane) of some representative keypoints from the initial position. As observed, the

travelled distance for all keypoints ranges from near 0 to roughly 1.5 meters. Additionally,

the distance between symmetric keypoints exhibits only minor variations along the entire

route (e.g. the standard deviation is 2.3 cm for the hips and 0.64 cm for the eyes), which

indicates the stability of the estimations.

(a) Trajectory of the robot. (b) Distance from the initial position of the person to a subset of keypoints.

Figure 6.14: Experiment where the person remains still while the robot moves 1 meter towards the person.
Only two RGB cameras are used at test time. As the person is not moving the positions should remain the
same throughout time.

The second experiment employs the same setup, with the person remaining stationary

while the robot approaches them following a straight line covering a distance of 1 meter.

Figure 6.14a shows the robot’s path (thick blue line), extracted from its localisation system,

and the position of the person’s ankles, with the initial point situated between them. Figure

6.14b displays the distances from the initial position of the person to the last. At every

instant, the position is calculated as the projection onto the floor of the same representative

keypoints as in the previous experiment. As shown in this figure, the distances remain

almost constant, which is the expected result. As in the previous experiment, the variations
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in the distances between symmetric keypoints are insignificant, with values from 1.8cm for

the ankles to 0.8cm for the hips, which demonstrate the robustness and good accuracy of

the model.

6.4 Conclusions

The torso pose estimation system explained in Section 6.2 is specifically designed for spaces

monitored by multiple cameras. It is assumed that individuals are visible to at least one

camera, although certain body parts may be occluded or beyond the field of view of some

cameras.

In comparison to other works, the proposed torso estimation system outperforms [161]

and it is -under good conditions- outperformed by [108]. Although [108] reports better

results, it requires RGB-D cameras, which are an order of magnitude more expensive than

low-resolution RGB cameras. Additionally, as reported in [108] their dataset does not con-

sider occlusions or partial views, so their results will likely deteriorate in real-life conditions.

A mean absolute error of 125mm in the torso pose coordinates is deemed acceptable

for the majority of human-robot interaction tasks, such as human-aware navigation. This

assessment takes into account: a) the average human size, i.e., the 50th percentile of adult

forearm-forearm breadth measures approximately 492mm (female) and 579mm (male)[62];

and b) proxemics research that identifies personal spaces as approximating a circle of around

1200mm in diameter[135].

Given the accuracy attained using standard RGB images and the marginal improvements

achieved through depth channel utilisation, conventional low-end webcams are arguably

enough for most HRI scenarios. Furthermore, camera calibration may be rendered unnec-

essary if the dataset is solely derived from real situations. However, employing a realistic

simulator to generate the majority of data for training significantly reduces the time and

resources required to obtain a valid solution for the pose estimation problem.

Although the torso pose estimator yields satisfactory results, it may prove insufficient for

certain applications necessitating more comprehensive information about body distribution.

Consequently, multi-person 3D full pose estimation emerges as a vital research field with a
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plethora of applications, including, but not limited to, human-robot interaction. Besides,

the torso pose estimator project does not include a reliable and tested method for cross-view

correspondence that enables its use in multi-person environments. The multi-person 3D full

pose estimator project effectively addresses this matter.

Deep learning serves as an efficacious instrument for learning human physiological priors.

However, traditional deep learning solutions call for vast amounts of labelled data, including

the model developed in Section 6.2. Addressing this challenge, the work presented in Section

6.3 introduces a deep learning-based method for the 3D multi-pose estimation problem,

utilising entirely unannotated data. The approach employs a GNN to discern the views

of various individuals in the scene, and an MLP to estimate the comprehensive 3D pose

of each person. The only prerequisite for training each network is that every element in

the dataset corresponds to a single individual. Both networks use information that can be

directly obtained from the RGB images, so the approach only requires conventional RGB

cameras.

Experimental results for the skeleton matching model on the CMU Panoptic and ARP

Laboratory datasets demonstrate exceptional model performance, as evidenced in sec-

tion 6.3.2, with near-perfect values across all clustering metrics.

Regarding the 3D pose estimation model’s accuracy, in comparison to VoxelPose, the

proposed method exhibits marginally lower accuracy values for detected coordinates, with

a mean per joint precision error of 26.06mm. However, it is crucial to highlight, as explored

in Section 6.3.2, the notable disparity between the detected 2D and the projection of the

3D ground truth in the CMU Panoptic dataset. Employing the projected 3D as a test

set, without retraining the network, the mean per joint precision error of the proposed

model is 17.84mm (marginally superior to VoxelPose error). This discrepancy renders the

evaluation somewhat unfair towards the proposed model, implying that the true precision

of the proposed 3D pose estimator is higher. Moreover, the computational complexity of

the proposed system is significantly lower than that of VoxelPose, making it an effective

solution for real-time applications without the need for annotated data.

The experiments conducted in Section 6.3.2 underscore the merits of training the models
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with a subset of cameras for inference time. This approach facilitates the system’s use

in a mobile robot equipped with only two RGB cameras for real-time applications. As

demonstrated in these experiments, the system possesses adequate precision for various

social robotics applications. In fact, the experiments executed in Section 5.5.4 for human-

aware navigation with a robot were conducted employing the 3D HPE developed in this

work to detect people’s positions in the environment.

Future work will enhance the accuracy of the estimator model by refining the training

process through hyperparameter tuning. Additionally, there is a plan to develop models that

are trained using data with incorporated intrinsic and extrinsic camera parameters, thereby

eliminating the necessity for scenario-specific training. The achievement of this latter goal

would make the model robot-agnostic, allowing users to effortlessly mount cameras on the

robot, perform calibration, and operate the system without requiring any training.
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Chapter 7

Synthesizing Traffic Datasets using

Graph Neural Networks

The work presented in this chapter has been adapted from the following publications:

[147] Rodriguez-Criado, Daniel, M. Chli, G. Vogiatzis, and L. J. Manso. Synthesizing

traffic datasets using graph neural networks. In International Conference on Intelligent

Transportation Systems. IEEE, 2023.

This chapter transitions from the exploration of indoor sensorized environments in previ-

ous chapters to outdoor city spaces, focusing specifically on crossroads monitored by CCTV

cameras. These spaces, following the core theme of this thesis, can also be regarded as sen-

sorized environments (specially in smart cities) due to the multitude of sensors present,

such as CCTV cameras, air quality sensors, thermometers, and potential actuators like

traffic control signals for traffic lights or variable message signs. Building upon techniques

developed in preceding chapters, particularly the synergy between Graph Neural Networks

(GNNs) and generative models for image generation (as discussed in Chapters 4 and 5),

this chapter employs a method where a conditional Generative Adversarial Network (GAN)

is conditioned with a GNN. This combined approach aims to generate synthetic, realistic-

looking traffic images. These can subsequently be used for training end-to-end deep learning

models in traffic applications, including traffic light control and traffic prediction. Another
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potential application could be generating footage to train individuals for traffic-related roles.

The persistent issue of traffic congestion, especially prevalent in major global cities, is

intensified by the escalating number of vehicles, while the navigable urban space remains

unchanged. Within this setting, proficient traffic management becomes a critical necessity

to reduce travel delays, road accidents, and environmental pollution. Intelligent Trans-

portation Systems (ITS) integrate sensing and communication technologies with automatic

control techniques, augmenting the safety and efficiency of transportation infrastructure [4].

Junctions are pivotal points in traffic management as they function as shared physical

spaces traversed by numerous vehicles. Effective traffic light control at these intersections

can lead to improved traffic flow. Traditional traffic lights, however, are not efficient when

they cannot adjust to variable traffic patterns [4]. The progression in machine learning offers

a solution through the use of algorithms that deduce optimal policies from raw sensory data.

Deep Reinforcement Learning (DRL) allows for the creation of end-to-end models that con-

trol traffic light signals directly from CCTV footage. Due to the financial implications and

potential hazards associated with collecting real-world traffic data, these models typically

depend on simulated data for training, which often leads to difficulties in generalising the

acquired knowledge to real-world decision-making. This chapter focuses on bridging the

’sim-real’ gap by developing a tool that autonomously generates photorealistic images from

2D traffic simulations (e.g., SUMO [16]) and recorded junction footage.

Garg et al. [53] recently presented a DRL traffic light agent trained on simulated cross-

roads within a game-like graphical environment, confronting the issue of generalisation

through domain randomisation [173]. Their method generates diverse simulated scenarios

with varying illumination, perspective, and textures, which enhances model robustness and

eases adaptation to real-world conditions. Nonetheless, training on photographic footage

eradicates the need for domain randomisation, requiring less training data for the same or

superior performance, as the model is trained and evaluated on similar data distribution.

This chapter elucidates the creation of realistic urban images from simulations, with a

primary focus on its application in traffic light control. However, the reach of this tech-

nology extends far beyond traffic management, encompassing a broad spectrum of exciting
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Figure 7.1: The transformation process from SUMO-generated to realistic images. This triptych illustrates
the consecutive stages involved in creating a realistic image from the SUMO simulator. The top image pro-
vides a bird’s-eye view of a junction simulation in SUMO. The bottom-left image presents the corresponding
bounding boxes of vehicles in SUMO, adjusted to the viewpoint of the CCTV camera. The image on the
bottom right culminates the process by displaying the image generated by our model using the specified
bounding boxes.

applications. For instance, Adaimi et al. [2] employ a drone swarm to capture aerial traffic

images for training object detection models. By supplementing their dataset with the gener-

ation of realistic images, substantial enhancements can be made to model performance and

accuracy, as demonstrated in [13]. Such progress offers considerable potential for improving

traffic pattern detection and analysis, thereby facilitating more informed decision-making

and effective urban planning.

Traffic surveillance also stands to gain from the generation of realistic urban images.

Models focusing on vehicle counting or tracking, using camera-based systems [50], can

enhance their accuracy and reliability by integrating synthetically generated footage that

covers a diverse range of parameters and conditions. Moreover, the creation of synthetically

generated footage of traffic scenarios under various parameters and conditions paves the

way for immersive and responsive training tools for professionals in traffic control. This

provides trainees with a comprehensive understanding of the cause-and-effect relationship
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between their decisions and the resulting traffic dynamics, far surpassing the limitations of

studying historical footage alone.

The transformative impact of this technology lies in its potential to revolutionise training

methodologies and decision-making processes across various domains. By generating real-

istic urban images from simulations, we can uncover novel insights, refine existing models,

and enable professionals to devise efficient and effective solutions.

7.1 Background

The ability to synthesize high-quality, realistic images has been a long-standing goal in

computer vision. One prevalent application of image generation is data augmentation [9,

126], which is essential in averting overfitting in large-scale deep learning models. Other

applications include image completion, style transfer, and resolution enhancement, among

others [115, 127, 117].

As explained in Chapter 2, three principal research directions prevail in the literature

for generating realistic images: Generative Adversarial Networks (GANs) [60], Variational

AutoEncoders (VAEs) [89], and diffusion/denoising models [72]. GANs have gained consid-

erable popularity for image generation due to their capability to produce high-resolution,

diverse, and aesthetically pleasing images, as compared to the blurry images often generated

by VAEs. While denoising models also achieve high-resolution image generation, they typ-

ically demand more computational time compared to GANs and remain relatively nascent

due to their recent emergence. For these reasons, a GAN has been selected as the image

generation method for this chapter’s work.

Certain GAN-based models, specifically conditional GANs (cGANs), can generate novel

images conditioned on both training data and a provided condition in the form of an image

or label. For example, SPADE [136] can employ segmentation maps as labels to generate

images with a realistic appearance. SPADE builds upon the pix2pix model [81], surpassing

it by preserving semantic information more effectively in the face of standard normalisation

layers (refer to Section 7.2.2 for further details). Nevertheless, these segmentation maps

provide conditions only in terms of location and object class. Conversely, text-to-image
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synthesis models [134, 142] provide more semantic information to the generation model.

However, this is at the expense of locality information, and these models are typically larger

as they incorporate a natural language processing unit. This chapter proposes a model that

can be conditioned with a combination of graphs and segmented images to address these

constraints. While segmented images preserve locality information, graphs, when processed

by a GNN, can convey more abstract information.

As previously discussed in Chapter 3, a salient advantage of GNNs lies in their capability

to process graphs effectively. Graphs are particularly valuable as they intuitively represent

the inputs for numerous problems, encapsulating both metric and semantic data along

with their intricate relationships. In urban scenarios, these data can include the time of

day, weather conditions, vehicle colours, and more. GNNs have also been proven to work

well in combination with other models, such as Convolutional Neural Networks, for image

generation from graphs. This is exemplified in the generation of cost maps for autonomous

robots, as outlined in Chapters 4 and 5.

The method proposed herein generates realistic images of traffic intersections based on

an input graph containing positions and colours of various entities, including cars, trucks,

buses, and pedestrians, as well as the time of day. The use of GNNs is crucial in the

synthesis of urban scenes as they can effectively handle a variable number of entities. Graphs

can encode more complex semantic information than segmented images, whilst segmented

images can convey the positional information of entities. Once the model is trained, a traffic

simulator such as SUMO [16] can generate new scenarios, which the proposed model can

readily translate into realistic images.

The primary contribution of this chapter is a novel image generation approach that

combines a cGAN model (SPADE) with a GNN to generate realistic traffic images from

graphs, thereby enabling structured and human-readable conditioning. To my knowledge,

this represents the first architecture of its kind. This model can transform simulated traf-

fic crossroad scenarios into realistic images, facilitating the generation of comprehensive

datasets with relative ease and minimal cost. These resulting datasets can subsequently

serve to train various machine learning algorithms for a multitude of urban traffic ap-

plications. Additionally, an application to generate images with vehicles and pedestri-
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ans in manually defined positions has been developed to test the model. Details of this

tool can be found in Section 7.3.5. More details about this tool can be found in Sec-

tion 7.3.5. For comprehensive information about the entire project, please follow the URL:

https://vangiel.github.io/projects/traffic.html.

7.2 Method

The following section provides an overview of the stages incorporated within the method-

ology. In the initial stage, data collection occurs, leading to the training of the generative

model (Section 7.2.2). Detailed information on the model’s input components—the graph,

the real image, and a segmented map—is given in Section 7.2.1.

Once the training process is concluded, the outputs from the SUMO simulator are trans-

formed into graphs (Section 7.2.3). This allows for realistic images to be generated from

these graph inputs, which are used by the image generator model.

The proposed approach represents a significant advancement in the generation of realistic

images by effectively leveraging the information encoded in graphs derived from simulations.

The rest of this section delves deeper into each stage of the pipeline. The associated code

is publicly accessible at https://github.com/gvogiatzis/trafficgen.

7.2.1 Dataset Creation

The proposed model for image generation takes a three-element tuple as input, consisting

of the segmentation map, the graph, and the real image. Fig. 7.2 illustrates a datapoint

containing these elements, providing a visual representation of the data used in this study.

This section explains the process of extracting the segmentation maps and graphs from real

images. The real images utilised for model training in this chapter are sourced from two

open-access real-time traffic surveillance cameras for two different traffic junctions. Both

are situated in the city of Krasnoyarsk, Russia. The crossroad depicted in Fig. 7.2c will

be referred to as CR11, while the one presented in Fig. 7.1 will be CR22. Note that

1Video streaming URL of the CCTV used: http://krkvideo14.orionnet.online/cam1560/embed.html?
autoplay=true

2Video streaming URL of the CCTV used: http://krkvideo5.orionnet.online/cam1487/embed.html?
autoplay=true
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generating images for a different junction requires the collection of new data, specific to

that particular setting, followed by retraining the model to accommodate the new input. In

total, 10, 952 images were gathered from CR1 videos and 11, 173 images from CR2 videos,

in a period of 24h each.

(a) Illustration of an input graph. Nodes in light grey represent grid nodes, while those in dark blue signify cars.
Green nodes correspond to buses, light blue nodes denote trucks, and small black nodes represent pedestrians. The
grid in this image has a resolution of 20× 20 nodes.

(b) Labelled segmented image. This illustration de-
picts the positions and sizes of the classes identified by
YOLOv7 in the real image, distinguished by varying
colours.

(c) Real image. This image was captured from a CCTV
camera positioned at a crossroad in Krasnoyarsk, Russia.

Figure 7.2: Illustration of a dataset data point from CR1, comprising three elements. This figure incorpo-
rates the three constituent elements of the dataset: the input graph, segmented image and real image.
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Segmentation Map Generation

A segmentation map in this context is a type of image that represents different segments

or regions of the original image, with each segment corresponding to a specific class present

in the image. Each pixel in a segmentation map is assigned a label that identifies the

category of its corresponding pixel in the original image. In a visual representation of a

segmentation map, each unique label is represented by a unique colour, making it easy to

visually distinguish between different segments or regions of the image.

Generating the segmentation map is a straightforward process. An object detection

model, namely YOLOv7 [185], is applied to the real image, yielding bounding boxes for

several classes: cars, buses, trucks, and pedestrians. It should be noted that any other

object detection model could serve the same purpose. Importantly, the number of classes

can be effortlessly extended within the range of classes detectable by YOLOv7, if required.

However, it’s important to acknowledge that the detection model is not flawless; it might

yield false positives and false negatives, which could impact the final generated image. The

potential for improved detection accuracy in future work might significantly enhance the

overall results.

Utilising the normalised coordinates and dimensions of the bounding boxes for each

detected object, a segmented map can be created in which each pixel value corresponds

to an integer representing the class using a one-hot encoding. If the detection of two

objects overlaps, the class from the latest detection is allocated to the pixels within the

intersection—a design choice that may be modified in future work. As the example model

generates five distinct classes (including the image background), the pixel values are in the

range [0, 4]. Fig. 7.2b shows an example of a segmented image drawing the classes with

different colours.

Graph Generation

The creation of graphs is a critical and intricate step that offers extensive customisation

flexibility to the designer, as seen in previous chapters. Due to the wide range of potential

graph representations for this application, numerous variants have been explored. For

brevity, this section will only discuss the two design strategies yielding the most favourable
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results, which only differ in how objects’ colours are represented. The first design, referred

to as the clustering-colours graph, produces the best outcomes in terms of the quality of

the generated images. On the other hand, the second design, named discrete-colours graph,

while resulting in slightly inferior performance, enables the user to condition the vehicle

colours using a discrete colour palette. This will be examined in greater detail in Section

7.3. Both graphs are identical, except for a minor variation in the nodes’ features, as

explained subsequently.

Node feature vector h (dimension 31 or 19)

Boxes Classes Time Colour encoding

x y w h bus truck car person grid sin cos
clusters-colours (dimension =20)/

dircrete-colours (dimension=8)

Table 7.1: Representation of the feature vector structure for each node in the graph.

The creation of the topology of the two aforementioned graph types is the same. First,

a graph is created in which each node represents an entity detected by the object detector,

YOLOv7. A lattice of nodes is generated (in the same fashion seen in Chapters 4 and 5),

with each node representing a spatial position within the image. This grid is crucial for

conditioning SPADE, as explained in Section 7.2.2. In the final step, both graphs are merged

by connecting the closest entity-representing nodes to the nearest nodes in the grid within

a specified radius, using the image coordinates. Both the grid density and the connectivity

radius are adjustable hyperparameters. Various values were assessed to achieve the optimal

balance between accuracy and efficiency. Fig. 7.2a provides an example of the final graph’s

topology, employing a grid resolution of 20 × 20 and a connectivity radius of 1 grid hop,

assuring 8-connectivity.

As mentioned, the vector of characteristics of the nodes differs for the two types of graphs

for the colour representation. The feature vector is classified into four sections, as delineated

in Table 7.1. The first three sections, which are shared across both graph types, encompass:

the coordinates and dimensions of the object bounding box; a one-hot encoding vector of

length 5 indicating the node class (bus, truck, car, person or gird); and the encoding of the

time of day using the sine and cosine.

The final section of the vector, which we will refer to as “visual features”, diverges

between the two graph types:
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• For the clustering-colours graph: This includes a 20-element vector indicative of the

object’s primary colours. This vector comprises clusters of the top 5 most predomi-

nant colours within the bounding box, encoded in RGB. Along with the three RGB

numbers, each cluster includes an additional number with the counts normalized using

a softmax function. This configuration results in a total feature vector length of 31.

• For the discrete-colours graph: Here we employ a one-hot encoding of length 8, rep-

resenting the detected vehicle’s colour. The colour palette includes black, white, red,

lime, blue, yellow, magenta, and grey. Colour detection consists in averaging the top 3

most predominant colours in the bounding box and calculating the Euclidean distance

to each palette colour based on their RGB coordinates. The colour with the shortest

distance is chosen. Given that averaging shifts the colour closer to grey, the mean

value must exceed a certain distance threshold for the specific case of selecting the

grey colour. With this option, the total length of the feature vector is 19.

By integrating these features into the graph nodes, we enrich the SPADE generator

with information about the entities’ colours and the time of day. The clustering-colour

graphs provide more detailed colour information leading to better results, while the discrete-

colours graph enables a straightforward indication of the entity colour during inference time.

The benefits of employing the discrete-colours graphs become evident when utilising the

demonstration tool presented in Section 7.3.5.

7.2.2 Model

This section details the combination of architectures for generating the images. The final

model consists of a modification of SPADE architecture including a GNN to condition

the generator with a graph. The graph can provide richer information to the generation

model allowing the creation of more complex conditions which are reflected in the final

image. First, the vanilla structure of SPADE is shown. The next subsection explains the

architecture embedded in SPADE that takes graphs as inputs. Finally, we provide a global

version of the final model pipeline for generating images from graphs.
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GAN Model, SPADE

To generate images from semantic masks, SPADE layers transform segmentation masks

into feature maps γ and β by first projecting the mask onto an embedding space that we

will call condition volume ωωω. Then, this volume is fed through two convolutional layers to

get the feature maps. The generated parameters γ and β, which are tensors with spatial

dimensions, are multiplied and added to the normalised activation from the previous layer

h, element-wise. Thus, the activation features hn,c,h,w are normalised and transformed as

follows:

h′n,c,h,w = γc,h,w(ωωω)
hn,c,h,w − µc

σc
+ βc,h,w(ωωω), (7.1)

where the indexes (n, c, h, w) refer to the batch size, the number of channels, the height and

the input width respectively. The parameters µc and σc denote the channel-wise mean and

standard deviation of the input feature map h.

The generator incorporates multiple ResNet blocks [68] with upsampling layers. The

semantic map is downsampled to align with the resolution required for learning the modu-

larization parameters γ and β, as each residual block operates at a distinct scale. In contrast,

the discriminator does not employ SPADE and follows the pix2pixHD [187] discriminator

approach, based on PatchGAN [81], which inputs the concatenated segmentation map and

the input image.

The main modification introduced in this chapter for the generator consists of generating

the condition volume ωωω using a combination of a GNN and transpose convolutional layers

as explained in Section 7.2.2. Now, instead of downsampling the semantic map, it is ωωω that

is rescaled to match the needed resolution in each layer. With regards to the discriminator,

the change implies the additional concatenation in the channels’ dimension of information

coming from the GNN to make the GAN symmetric (see Section 7.2.2).

Condition Model

As already mentioned, the input data (i.e., vehicles, pedestrians and other contextual infor-

mation such as the time) are combined with a 2-dimensional lattice to form an input graph
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Figure 7.3: This illustration shows the process of generating the condition volume ωωω, which is used to
condition the image generation of SPADE. The graph is processed by 3 GAT layers, and then the lattice
of nodes is filtered from the output graph forming a hidden state image. This image is subsequently fed
into an array of upsampling and convolutional layers to fabricate the final condition volume. Each volume
depicted in the image has its dimensions written at the top, where the first number denotes the channels,
and the succeeding pair specifies the height and width.

(Fig. 7.2a). As with most GNN layers, GAT layers output graphs with the same structure

as their input graph but different node embeddings as seen in Chapter 3. The input graph

is processed by 3 GAT layers, producing a graph with the same structure but adequate

to condition SPADE after being filtered and processed. This is done by training the GAT

layers to embed the entities’ information into the lattice sub-graph so that the lattice can

be converted into an image-like format creating a latent image. This is done by creating a

pixel for each of the nodes in the lattice and using the features of the nodes as the channels

of the image. Finally, this latent image is the input of 4 transpose convolutional layers that

generate the desired condition volume ωωω. This pipeline is depicted in Fig. 7.3.

Final Model

The final model adds the condition module to the SPADE blocks of the generator and also

includes some modifications to the discriminator of SPADE to make the network symmetric.

Fig. 7.4 is a diagram of the final model pipeline with the generator and the discriminator of

SPADE. The data flow starts with the segmentation mask as input of the generator, then

the condition module uses the graphs to yield the volumes that are also fed to the generator.

The generator produces a fake image that is concatenated in the channel dimension with the

corresponding mask and the latent image of the condition module. Finally, the real image

is concatenated with the mask and the latent image in the channel dimension, and then the

real and fake images are combined in the height dimension. This generated fake-and-real

volume is the final input of the discriminator. Note that one fake image is generated every

two real images fed to the discriminator as done in the original version of SPADE.
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Figure 7.4: Complete model pipeline. The schematic depicted herein illustrates the integration of the
condition model within the SPADE architecture. The condition model accepts the graph as input, producing
the condition volume utilised by the generator. Moreover, the hidden state image stemming from the
condition model is concatenated in the channel dimension to the discriminator’s input.

7.2.3 From SUMO to Graphs

One of the main aims of this work is to drive image synthesis from traffic simulations.

One can then apply various actions to the traffic system (e.g. traffic control decisions) and

observe their effect through visual footage generated in response. This not only bridges

the gap between trial and error but also fosters the training of decision-making entities

(including AI and humans) using footage generated in reaction to the decisions made. An

instance of this loop closure, using SUMO [16] as the driving simulator, is demonstrated

herein.

The first step entails constructing a topologically accurate representation of the traffic

junction network within SUMO. This can be readily accomplished using scripts capable of

importing geometry and network structure from OpenStreetMap (OSM) data. The second

step necessitates the establishment of a correlation between 2D points on the SUMO simula-

tion and points on the real-world junction. Assuming geometric accuracy of the OSM data,

this correlation would simply be a 2D homography with 8 degrees of freedom. However,

significant discrepancies are often encountered between the simulation geometry and the

real-world junction.

In this chapter, the approach adopted involves defining individual traffic lanes in the
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junction as cubic splines. This can be efficiently completed within a few minutes by clicking

through points in the junction images, a method that has proven effective in practice. Fig.

7.5 depicts the lane designer GUI with the SUMO lane selector (left) and the cubic spline

lane editor (right). Within each lane spline, corresponding waypoints between SUMO and

the real world can be defined (e.g., the point where vehicles halt for the red light and other

clearly demarcated landmarks). The outcome of this process is a reliable mapping between

points on each SUMO lane and the corresponding points on the real junction.

Figure 7.5: This illustration exhibits the interface of the lane designer application, juxtaposing the SUMO
lane selector (left) with the cubic spline lane editor (right). It facilitates the definition of corresponding
waypoints between the SUMO environment and real-world images for each lane spline.

The final stage of this process involves determining vehicle bounding boxes for each

location within the junction. These bounding boxes subsequently aid the creation of graphs

(as elaborated in Section 7.2.1) which serve as inputs for our image generation model.

To procure these bounding boxes, a spatial bounding box distribution is derived utilising

histograms. Fig. 7.1 illustrates the progression from a SUMO frame (left) to a set of

bounding boxes defined on the actual junction image (middle), culminating in a synthesised

CCTV frame (right) featuring the road background and correctly positioned vehicles.

7.3 Experimentation and Results

This section presents an in-depth examination of the experiments conducted with the gen-

eration model, along with the resultant findings. The final subsection encompasses a de-

scription of the demonstration tool developed for manual testing of the model.
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7.3.1 Implementation Details

All experiments were carried out utilizing an NVIDIA RTX A6000 GPU that has a memory

capacity of 48GB. All the models were trained with image resolutions set at 640x640 pixels,

whereas YOLOv7 was used to detect bounding boxes from images with a resolution of

1280x1280 pixels. A batch size of 12 was employed for the training phase, and this was

increased to 24 during testing.

7.3.2 Dataset and Metrics

Three different models were trained with the CR1 dataset: the standard SPADE version,

and the combination of the GNN and SPADE for the two types of graphs. These models were

trained using an identical training set consisting of 10, 322 images, graphs, and segmentation

maps. Each model was evaluated using three distinct metrics on a test set comprising

630 data points, following the same metric system utilised by SPADE [136]. To quantify

segmentation accuracy, we used mean Intersection-over-Union (mIoU) and pixel accuracy

(Accu.). The Frèchet Inception Distance (FID) [71], on the other hand, was utilised to

evaluate the discrepancy between the distributions of synthetic and real images.

Models FID
mIoU Accu.

Cars People Trucks Cars People Trucks

SPADE 176.32835 0.63349355 0.3243129 0.099982 0.70595584 0.59278189 0.13323193
cluster-colours 149.88987 0.53274998 0.21035392 0.27845053 0.69294361 0.24580686 0.34741428
discrete-colours 154.56592 0.50205496 0.16974847 0.01920121 0.66411157 0.20146478 0.02427287

Table 7.2: Results for the three different models evaluated in the proposed metrics.

The mIoU and pixel accuracy metrics for each class were calculated, excluding the ‘back-

ground’ due to its disproportionate size relative to other classes. The ‘buses’ category was

also omitted due to a lack of sufficient images within the training dataset to facilitate a

decent generation of these vehicles. The performance against these metrics is summarised

in Table 7.2.

The analysis of the results reveals that the proposed models demonstrate a significant

enhancement in the FID score compared to SPADE, with the cluster-colours model pro-

ducing superior outcomes for this metric. Although the mIoU and pixel accuracy of the

proposed models are generally slightly lower than SPADE results, they remain competitive,

with the cluster-colours model producing superior results for trucks. Bear in mind that the
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FID is the most critical measure for this study, as it evaluates the realism of the generated

images, whereas the other two metrics pertain more directly to image segmentation models.

Nevertheless, the mIoU and pixel accuracy were included as these metrics were employed

in the original SPADE paper.

It is also worth highlighting that the additional computational burden of the cluster-

colours and discrete-colours models over the basic SPADE model is marginal, adding only

10.42% and 10.28% more parameters, respectively. Consequently, the computational speed

and memory usage remain comparable. The training for the proposed models and SPADE

for the specified batch size and number of images took approximately 3.5 days. The gener-

ation of images for the test set takes approximately 2 minutes for all the models excluding

the time needed to load the data.

7.3.3 Visual Results

Figure 7.6: This illustration presents the results for three distinctive frames from the test dataset, each
in separate rows. The leftmost column constitutes the ground truth images, succeeded by images generated
by the cluster-colours, discrete-colours, and SPADE models respectively. As observable, the cluster-colours
model is the most proficient at preserving vehicle colours, whereas the SPADE-generated images exhibit the
poorest quality.

In order to interpret the above metrics more tangibly, several frames generated by each

model are presented in Fig. 7.6. Each row in this figure represents a different frame from the

dataset, where the first image corresponds to the ground truth derived from the test set, and

the subsequent images are the outputs generated by the cluster-colours, discrete-colours,
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and vanilla SPADE models, in sequence.

A close inspection of the results reveals that the cluster-colours model is proficient at

effectively reconstructing the colours of the majority of vehicles present in the original

images. However, the discrete-colours model tends to struggle in generating vibrant colours,

although it performs adequately with white, black, and grey vehicles. This issue could

potentially be attributed to the method employed to discretise the colour palette, a point

that could be optimised in future work. In contrast, images synthesised by the vanilla

SPADE model display vehicles with arbitrary colours, and they often introduce artefacts

into the majority of frames, rendering them less visually appealing and realistic.

7.3.4 Time Conditioning

Figure 7.7: Two examples of images generated at different times of the day. These images were generated
using the demo tool in Section 7.3.5. It is readily apparent that the daytime-generated image (left) possesses
more illumination, whereas the nocturnal counterpart (right) exhibits a darker ambience, authentically
simulating the respective time frames.

As previously discussed, the proposed model in this study is also capable of generating

images conditioned at different times of the day. Fig. 7.7 demonstrates this capability,

featuring two images generated by the discrete-colours model corresponding to daytime

(Fig. 7.7 left) and nighttime conditions (Fig. 7.7 right).

7.3.5 Interactive Tool

To evaluate the image generation model under various conditions, a tool with a visual

interface was designed, as illustrated in Fig. 7.8. The graphical user interface (GUI)

displays two distinct frames. On the left frame, the user can draw various bounding boxes,

each denoting the placement of entities to be generated.
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Figure 7.8: Graphical user interface of the interactive tool. The application’s interface is divided into two
principal frames: the left frame facilitates the entry of user input data, while the right frame displays the
generated image. The toolbox for choosing vehicle types, colours, and time of day – parameters to condition
the image generation – is located in the lower-left corner. Users can sketch an arbitrary number of bounding
boxes within the left frame, indicating the desired positions of entities to be generated.

The entity type, its colour, and the time of day can be specified using the tools button,

situated at the lower-left corner of the GUI. The right frame exhibits the image produced

by the model, reflecting the entities and conditions specified within the left frame. A new

image is generated every time a modification is done in the left frame.

7.4 Conclusions

The synthesis of realistic images from simulated ones is highly beneficial and presents a

myriad of applications, where data augmentation stands out. The present chapter has

presented the development of a tool that is capable of generating traffic images with a

realistic appearance from a simulator by merging a GAN-based model, SPADE, with a

GNN for conditioning.

This tool enables the production of large datasets with relatively less effort, vital for

training computationally demanding deep learning models that comprise numerous param-

eters (among other applications), thereby preventing the overfitting of the training data.

This results in enhanced generalisation to new scenarios. Section 7.3 illustrates the effec-

tiveness of the proposed model in comparison to the unmodified version of SPADE, with

only a minor increase in computational complexity.
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The presented model is not only capable of generating realistic images but also condi-

tioning features of the generated images using semantic information, namely the colours of

the vehicles in the image and the time of the day. Section 7.3.5 shows a tool with a GUI

that enables the user to produce images by manually setting the stated conditions along

with the positions of the entities to be created.

Looking towards future research, the plan is to train the model with additional data and

utilise more than one consecutive frame as input for the model to ensure stability in videos.

These improvements are likely to enhance the quality of the generated images. Another

goal is to expand the scope of experimentation by introducing more classes for the model

to generate and integrating additional conditions such as weather. This expansion would

necessitate improvements in the detector model. An intriguing prospect for subsequent

research involves substituting the current cGAN with a diffusion model. Given the note-

worthy results achieved by these models in recent years, this approach could yield valuable

insights.
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Conclusion

This thesis presents several efficacious applications of deep learning within graph domains,

specifically in the context of indoor and outdoor sensorised environments. As our society

witnesses a proliferation of ’smart’ cities, homes, and public spaces, these sensor-rich envi-

ronments are becoming more prevalent. An emerging paradigm within the sphere of deep

learning in graph domains, Graph Neural Networks (GNNs), has proven to be an excep-

tionally potent tool within this field, as substantiated throughout this work. The models

and tools developed herein offer pragmatic solutions to real-world challenges posed by our

progressively sensorised world.

The contributions within this thesis can be categorised into three primary domains: cost

maps and discomfort scores for human-aware navigation with robots, human pose estimation

in indoor sensorised environments, and image generation for traffic applications. The first

two categories can significantly enhance the functionality of assistive robots, whether in

the homes of elderly or disabled people, in public settings such as events and restaurants,

or even for delivery robots. Conversely, the last application provides a valuable tool for

generating realistic traffic images, supporting a variety of deep learning applications in traffic

management. This thesis not only underscores the impact of the developed projects but also

propels new research avenues within the paradigm of GNNs and sensorised environments.

The principal questions this thesis aims to address are stated in Chapter 1. We have
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underscored numerous advantages of GNNs when employed in sensorised environments,

outperforming conventional deep learning models as outlined in Chapter 3 and empirically

validated in the contributions of this thesis. The experiments conducted in the present

work illustrate the unique capabilities of GNNs, exploiting their inductive bias for graph-

structured data and relational information to yield superior performance than state-of-the-

art deep learning techniques within this niche field.

The thesis posits that, when applied efficiently, GNNs can surpass classical methodologies

for specific applications within sensorised environments. The efficacy of these networks is

manifest in tasks such as data fusion from multiple RGB cameras, effective utilisation

of data relationships, and the efficient extraction of semantic data from graphs. This is

exemplified in the generation of cost maps that account for interactions between people,

objects, and robots (Chapters 4 and 5), where traditional deep learning models grapple with

relationship identification. Additionally, the swift estimation of 3D human poses through

the aggregation power of GNNs, particularly when fusing data from multiple camera sensors,

is demonstrated in Chapter 6. The incorporation of semantic data into graph features also

presents a distinct advantage, as proven by its utilisation in conditioning the generation of

images (Chapter 7). The inherent flexibility of GNNs allows for enhancements in specific

cases. For instance, altering input graphs or integrating them with other artificial neural

network architectures may lead to improved outcomes.

Despite GNNs’ more universal applicability compared to MLPs and CNNs, they often

suffer from slower implementation owing to their more complex calculations. The con-

tributions of this thesis have exploited the strengths of both worlds by creating hybrid

architectures to address unique challenges. Collectively, the experiments and methodolo-

gies developed provide a comprehensive overview of the efficient application of GNNs in

sensorised environments.

Over the course of these almost four years, a continuous learning journey has unfolded,

each stage of which is mirrored in the chapters of this thesis. I commenced my doctoral

endeavour by joining ongoing projects concerning the estimation of disruption scores, an

experience that was not only enlightening but also allowed me to make significant contri-

butions. Following this, I collaborated with fellow researchers in the specialised field of
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human pose estimation. Ultimately, the accumulation of knowledge and skills enabled me

to conduct independent research in the final phase of this thesis, focusing on the generation

of realistic traffic images.

8.1 Summary of Contributions

In this thesis, we have proposed a multitude of novel contributions, which answer the

research questions stipulated in Chapter 1, Section 1.1. The key contributions have been

categorised into three key areas:

Contributions to Human-Aware Navigation with Robots

• SNGNN-2D is introduced in Chapter 4. This is a hybrid architecture that blends

GNNs and CNNs to create two-dimensional cost maps for planning human-aware

navigation trajectories. The robustness and performance of this model are confirmed

by the experiments detailed in section 4.4.

• A novel efficient approach enabling the combination of GNNs and CNNs, is proposed.

This approach consists of an additional grid of nodes introduced into the GNN graphs

capturing the 2D information of the scene. Subsequently, this grid of nodes is con-

verted into an image that can be processed by a CNN to generate the final output.

• A novel dataset, The SocNav2 dataset is unveiled in Chapter 5, offering short

video sequences of a 3D environment that encapsulates the dynamics of a room with

a mobile robot (refer to Section 5.2). In addition to including the velocities of the

entities involved, this dataset also includes types of interactions between humans and

human-objects. The SocNav2 dataset is a valuable asset for training machine learning

models in the realm of human-aware navigation and social robotics. Furthermore, it

serves as an effective benchmark for assessing the performance of such models. This

dataset contributes towards fostering further research and development within these

fields.

• In Chapter 5, Section 5.4, SNGNNv2 is introduced, an improved model capable of

generating discomfort scores from dynamic scenarios, addressing the primary limita-
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tion of SNGNN [118]. SNGNNv2 adopts a similar approach to its predecessor but

with notable enhancements. It considers two distinct scores to assess different facets

of social navigation, and the model is trained utilising dynamic scenes in which hu-

mans and the robot are in motion, addressing the primary limitation of SNGNN. A

novel method for creating graphs that consider the dynamics of the environments is

proposed to work with this new model (Section 5.3 and Section 5.5.2).

• SNGNN-2Dv2 is presented, utilising SNGNNv2 to generate a new dataset of images,

allowing the creation of disruption maps from dynamic data in Section 5.5.

Contributions to Perception in Indoor Sensorised Environments

• In Chapter 6, a model that estimates the 3D pose and orientation of the human torso

using GNN is detailed. This represents a pioneering approach to predicting pedestrian

orientation.

• A GNN-based solution is described for matching various 2D poses from multiple cam-

eras in scenarios with a variable number of people. This solution overcomes the

limitations identified in the previous contribution.

• A model capable of inferring the 3D keypoints of detected humans is introduced. It

uses self-supervised learning to minimise the difference between the detected 2D key-

points and the estimated pose re-projections. Furthermore, the model demonstrates

adaptability to mobile robots across different scenarios without the need for retraining,

provided only fixed onboard cameras are used (Section 6.3.2).

Contributions to Image Generation for Traffic Applications in Outdoor Sen-

sorised Environments

• In Chapter 7, a novel image generation method combining a cGAN model (SPADE)

with a GNN is presented. This method is capable of generating realistic traffic images

from graphs, offering structured and human-readable conditioning of the generated

images. The model can be used for transforming simulated traffic scenarios into

realistic images, thereby facilitating the creation of comprehensive datasets for various
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urban traffic applications such as traffic light controls or traffic forecasting.

• An application for generating images with vehicles and pedestrians in user-defined

positions is discussed. This tool serves to test the model, with further details available

in Section 7.3.5.

8.2 Limitations, Directions and Future Work

Despite the substantial contributions detailed in the preceding sections, further research

opportunities persist within each of the three categories outlined.

In relation to the work on human-aware navigation for robots developed in Chapters

4 and 5, the prospective scope for investigation involves user profiling and personalisation

of the most recent models, namely SNGNNv2 and SNGNN-2Dv2. This could encompass

consideration of human activities and gaze patterns, as exemplified by studies such as [35].

Furthermore, an emergent line of research explores strategies for correlating the output of

SNGNNv2 (pertaining to questions Q1 and Q2) with the robotic driving control mechanism.

Although an end-to-end solution is conceivable, it presents challenges in obtaining labelled

examples and modulating the final control action. A compelling alternative may lie in using

the GNN output as an additional constraint, which a Model Predictive Controller can meet

[128]. To improve the performance of the models, future work will also focus on training

the models to estimate interactions based on previous human behaviour and movements

instead of relying on third-party models for detecting interactions. A particularly intriguing

endeavour would be to integrate SNGNNv2 (or a similar model) within a reinforcement

learning framework to produce task-specific rewards.

Focusing on the pose estimation with RGB cameras presented in Chapter 6, future en-

deavours aim to optimise the estimator models’ precision through rigorous hyperparameter

tuning. Employing a robust third-party 2D detector such as MoveNet [12]—capable of dis-

cerning full skeletons—would likely bolster the overall pipeline accuracy. Additionally, an

initiative is in place to devise models that incorporate intrinsic and extrinsic camera param-

eters within their training data, thereby obviating the need for scenario-specific training.

Realising this ambition would render the model robot-agnostic, thereby facilitating camera
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installation on the robot, simplifying calibration, and eliminating the need for supplemen-

tary training. Another significant enhancement for the 3D full pose estimator would involve

tracking the 2D poses in the cameras and querying the matching network only when the

tracker is lost. This strategy could significantly reduce the number of queries to the model,

thus enhancing its operational speed.

Lastly, the realistic traffic images generation project presented in Chapter 7 arguably har-

bours the most promising future prospects, given its extensive potential. Future directions

include augmenting the model’s training data and employing multiple sequential frames

as model input—enhancements expected to improve the stability of generated images. A

further ambition involves encompassing additional generative classes and integrating vary-

ing conditions such as weather scenarios. An intriguing avenue for ensuing research could

entail replacing the existing cGAN with a diffusion model. Given the impressive outcomes

achieved by such models in recent years, this strategy might uncover valuable insights.
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Appendix A

ARP Laboratory Experimental

Setup

This appendix delineates the specifications of the experimental setup implemented within

the Autonomous Robotics and Perception (ARP) Laboratory at Aston University, as used

in the experimentation of Chapters 5 and 6. The setup encompasses the robot, an array of

wall-mounted cameras, and the communication system interlinking these components.

In addition, the appendix provides specifications for the machine learning server at

Aston, which has been primarily employed for training the majority of models designed

throughout this thesis.

A.1 Robot

The robot utilised for the experiments is the differential RB-1 base from Robotnik, the

specifications for which can be located in Section A.1.1. Upon this base, we have engineered

a body that incorporates an additional assortment of sensors and actuators, alongside a

tactile screen to facilitate user interaction. These components are detailed in Section A.1.2.
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A.1.1 Robot RB-1 Base

The RB-1 base mobile robot, as described by Robotnik, is designed specifically for the

development of indoor logistics applications. This platform has the capacity to transport

varying payloads and materials or to integrate alternative systems such as a robotic arm or

torso. For our purposes, we have engineered a torso atop the robot as detailed in Section

A.1.2.

The version of the RB-1 base acquired for the ARP laboratory is equipped with a

localisation and navigation laser, operational over distances ranging from 5 to 30 metres,

as well as an RGBD sensor for obstacle detection - namely, the UST-20LX sensor and the

Orbbec Astra sensor, respectively. These features enable the robot to halt, circumvent

obstacles, or seek an alternate path as required to reach the succeeding waypoint.

The robot’s software comprises a control system, a laser-based localisation system,

a navigation system, and a rudimentary HMI user interface. All Robotnik robots are

fully customisable and built on ROS. Further information about this base and its sen-

sors can be obtained from the manufacturer’s webpage: https://robotnik.eu/products/

mobile-robots/rb-1-base-en/

Figure A.1: Dimensions of the RB-1 Base from Robotnik.

Figure A.1 provides an image of the RB-1 base along with its dimensions. Additionally,

the robot is supplied with a PS4 controller, facilitating manual operation when necessary.
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A.1.2 Robot’s Body

A customised structure was engineered atop the RB-1 base to engender a more user-friendly

aesthetic, given the robot’s intended use in human-aware navigation experiments. This

structure also houses several sensors, actuators, and an additional computer - an NVIDIA

Jetson Orin.

Figure A.2a illustrates the final structure affixed to the RB-1 base, comprising a metallic

frame cloaked in FoamX sheets. These sheets are magnetically attached to the structure,

facilitating easy removal. A tactile screen, connected to the Jetson Orin, is integrated into

the front of the robot to enhance interactivity. The body of the robot incorporates various

components, which are more distinctly visible in Figure A.2b where one side of the structure

is detached.

(a) Image of the structure with the front
screen.

(b) Detailed image of the robot’s body compo-
nents.

Figure A.2: Images of the robot’s body constructed on the RB-1 Base.

The components include an access point located on top of the structure for communica-

tion with the other components in the room (refer to Section A.4 for additional details), a

’neck’ equipped with two servos, thereby providing two degrees of freedom (yaw and pitch),

and a ZED 2 camera mounted on top (see Section A.3 for further information about the

camera). An NVIDIA Jetson Orin computer is also incorporated into the robot’s body to
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control all the mentioned devices (refer to Section A.2 for more details about this computer).

All these components are powered by a battery with the following specifications:

• 48V/52V 24AH (100-1800W)

• Nominal Voltage: 48V/52V

• Rated Capacity: 24AH

• Battery Cell: 3000mAH

• Max Constant Discharge Current: 50A(BMS)

• Charger: 54.6V/58.8V 4A

• Discharge Port: A pair of XT60

A.1.3 Mapping the Room, Localisation and ROS Navigation System

This section details the steps required to enable the ROS navigation stack on the RB-1

base. The process commences with recording and saving a map of the room. To initiate

map recording, open a terminal and execute the following commands:

$ ROS_NAMESPACE=robot roslaunch rb1_base_localization gmapping.launch

$ roslaunch rviz rviz

The first command starts the gmapping server, which begins map recording, while the

second command opens RViz, a visual tool in ROS that displays the map as it is generated

(ensure the correct RViz configuration is used). The robot is manually navigated across

the entire space to be mapped. After recording the full map of the room, a similar result

to that shown in Figure A.3 should be achieved.

To store the recorded map as a file, execute the following command, which saves the

map to the home directory by default:

$ ROS_NAMESPACE=robot roslaunch rb1_base_localization map_saver.launch
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Figure A.3: Map recorded of the ARP Laboratory space using the laser sensor of the RB-1 base.

Figure A.4: Screenshot of RViz tool showing the global and local costmaps of TEB planner, the position
of the robot, the ACML particles in red and the tools ribbon on the top.

Now that the map is available, the Adaptive Monte Carlo Localisation (AMCL) [196]

module can be utilised to localise the robot on the map. To start, the first step is to load
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the recently recorded map with the following command:

$ ROS_NAMESPACE=robot roslaunch rb1_base_localization map_server.launch

Once the map is loaded and visible in RViz, the localisation program can be started by

executing:

$ ROS_NAMESPACE=robot roslaunch rb1_base_localization amcl.launch

A multitude of red arrows will appear in RViz. Select the tool in RViz to indicate the

robot’s estimated position (the tool is highlighted with a green arrow in Figure A.4), then

move the robot around the room until these red arrows nearly vanish, as depicted in Figure

A.4. After this step, the robot will be localized within the room. The final step is to

initialize the navigation system, which uses the Timed Elastic Band (TEB) planner [154]:

$ ROS_NAMESPACE=robot roslaunch rb1_base_localization move_base.launch

With the navigation system operational, goals can be set for the robot on the map, either

via RViz or by publishing a ROS topic with the desired coordinates. The tool to set the

goal can be seen in the capture of Figure A.4. The robot will navigate towards the set goal

while adhering to the global and local cost maps of the TEB planner.

A.2 NVIDIA Jetson Orin

The Jetson Orin is a compact computer developed by NVIDIA, specifically aimed at AI

applications. According to NVIDIA, this series of products are the world’s most powerful

AI computers designed for energy-efficient autonomous machines. NVIDIA Jetson Orin

modules can deliver up to 275 trillion operations per second (TOPS), offering eight times

the performance of the previous generation. This allows for multiple concurrent AI inference

pipelines, along with high-speed interface support for multiple sensors.

In the ARP laboratory, the specific Jetson Orin module used is the Jetson AGX Orin

Developer Kit, depicted in Figure A.5. More detailed information regarding the specifica-

tions of this computer can be found on the NVIDIA website: https://www.nvidia.com/
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en-gb/autonomous-machines/embedded-systems/jetson-orin/

Figure A.5: Jetson AGX Orin Developer Kit used in the ARP laboratory.

A.3 Cameras

There are a total of five cameras installed in the ARP laboratory, and they are of two

different types: three Intel RealSense depth cameras D455 and two ZED2 cameras from

Stereolabs. One of the ZED 2 cameras is mounted on top of the robot, as mentioned in

Section A.1.2, and the other one, along with the three D455 cameras, is placed on the walls

of the laboratory. Figures A.6b and A.7b show examples of the placement on the wall

for each of the camera types. Each camera is connected to an NVIDIA Jetson Orin for

image capture and processing. The characteristics of both camera models are detailed in

the following sections.

A.3.1 ZED 2 Camera

As stated by the manufacturer, the ZED 2 is the first stereo camera that employs neural

networks to replicate human vision, with the ability to perceive depth. It comes equipped

with a built-in IMU, Barometer, and Magnetometer, enabling the capture of real-time syn-

chronized inertial, elevation, and magnetic field data alongside image and depth. The ZED

2 features two 16:9 native sensors and ultra-sharp 8-element all-glass lenses that can cap-

ture video and depth with a field of view (FOV) of up to 120° and a resolution of up to

2.2K. These cameras benefit from a wide-angle FOV, an advanced sensor stack and ther-

mal calibration for significantly improved positional tracking accuracy. For more detailed
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specifications, such as the frame rate for each resolution, please refer to the manufacturer’s

website: https://www.stereolabs.com/zed-2/.

(a) (b)

Figure A.6: ZED 2 camera from Stereolabs (a) and its location on the wall (b)

A.3.2 Intel RealSense Depth Camera D455

The D455 extends the distance between the depth sensors to 95 mm, which reduces the

depth error to less than 2% at 4 meters. To enhance the RGB image and the correspondence

between the depth and RGB images, the RGB sensor includes a global shutter and matches

the depth FOV. This camera also integrates an IMU, which helps refine depth awareness in

any situation where the camera is moving, thereby enhancing environmental awareness for

robotics and drones. Figure A.7 illustrates the camera and its location on one of the walls.

More information about the specifications can be found at https://www.intelrealsense.

com/depth-camera-d455/.

(a) (b)

Figure A.7: Intel RealSense Depth Camera D455 (a) and its location on the wall (b)
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A.4 Communications

To facilitate communication among all the computers in the ARP laboratory, a local network

was established using a switch and a high-speed access point, as depicted in Figure A.8, to

ensure connectivity with the robot. Specifically, the access point used is the wAP 60Gx3

Access Point. More information on this can be found at https://mikrotik.com/product/

wap_60gx3_ap.

The wAP 60Gx3 Access Point is a novel model designed for the 60 GHz spectrum.

It is equipped with an antenna array that supports a wide angle of coverage, specifically

optimized for multipoint operation. The 96 antenna elements work in conjunction with

beamforming technology to provide connectivity for up to eight 60 GHz client devices si-

multaneously, within a 180-degree field of view. Because of its high operating frequency, it

does not interfere with the bandwidth of other systems such as WiFi. Moreover, its reach

is limited, providing coverage only within the room’s area.

There is one wAP 60Gx3 antenna located on the wall and another one installed on

the robot. The one on the wall is connected via Ethernet to the switch, which in turn is

connected via Ethernet to all the computers linked to each of the cameras and to a central

computer. This setup creates a local network that is not connected to the internet but

interconnects all the elements in the ARP laboratory.

Figure A.8: wAP 60Gx3 Access Point
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A.5 EPS Machine Learning Server

In this final section, the primary specifications of the Aston College of Engineering and

Physical Sciences (EPS) Machine Learning Server are presented. This server has been

employed extensively for training and testing the majority of deep learning models developed

throughout this thesis. The specifications are as follows:

• 10x NVIDIA RTX A6000 48GB GPUs (each: 10,752 CUDA cores, 336 3rd-gen Tensor

cores, 84 2nd-gen RT cores)

• 2x Intel Xeon Gold 5218R - 2.1GHz - 20 cores/40 threads - 27.5MB cache.

• 768GB (12x64GB) 2933MHz DDR4 RAM.

• 28TB storage (7x 4TB Intel DC4510 NVME)
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Graph Neural Network

Over-Smooth the Output?

This appendix introduces a small-scale study designed to assess the effectiveness of the

Graph Neural Network variants employed in this thesis when used with the similar data

referenced in Chapters 4 and 5. As noted in Chapter 3, a constraint of deep GNNs is their

tendency to produce over-smooth outputs as they increase in depth. The objective of this

study is to ascertain if this issue impacted the outcomes of the cost maps produced in the

chapters mentioned above. Given that these cost maps are 2D images derived from zero-

dimensional data, no ground truth exists against which to validate the expected results.

The generated cost maps, as illustrated, are largely isotropic and display smooth-edged

blobs. This experiment aims to determine whether this kind of output is what should

be anticipated when bootstrapping our zero-dimensional dataset, or if it results from the

over-smoothing problem inherent in GNNs.

The experimental design entails utilizing a Graph Neural Network combined with a

CNN with identical characteristics to those utilized in Chapter 5. In this case, we want to

approximate non-linear (hard edges) and non-isotropic functions. In contrast to the work

in Chapter 5, the labels are not provided by participants but are instead the pixel values

of the functions depicted in Figure B.2. The graphs, scenarios, model architecture, and

hyperparameter tuning approach employed in this study are analogous to those utilized
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Figure B.1: A bird’s-eye view of one of the scenarios used for testing the functions. The red arrows indicate
in which direction the group of humans are moving. There are two static humans and a static object (plant).

in Chapter 5, with the sole exception being the data used for prediction (i.e., the ground

truth).

B.1 Dataset and Functions

The datasets of graphs used in this experiment are identical to those of Chapter 5. They

are created from the same set of short videos. Figure B.1, shows an example of one video

frame where we have a group of dynamic humans, static humans and an object.

(a) Function 1 (b) Function 2 (c) Function 3

(d) Function 4 (e) Function 5 (f) Function 6

Figure B.2: Examples of graphs
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The different functions are described as follows:

• Function 1 (Figure B.2a): Each human and object in the scenario is represented as a

squared oriented in the same direction.

• Function 2 (Figure B.2b): Each entity in the room is represented as a non-oriented

triangle.

• Function 3 (Figure B.2c): Same as function 2 but in this case the triangles follow

the same orientation of the entities and the objects are represented by not-oriented

squares.

• Function 4 (Figure B.2d): Slight longer triangles with a gradient of values having the

largest values in the barycenter and lowest values in the edges. The superposition of

several triangles is calculated with the sum of their values.

• Function 5 (Figure B.2e): Same as function 3 but in this case we take 3 frames

separated by 1 second each. The triangles of the former frames have higher values

than the later frames.

• Function 6 (Figure B.2f): Same as function 5 but adding several additional triangles

per entity extrapolated from its trajectory.

B.2 Experimentation

Three different variants of GNNs of the ones explained in Chapter 3 were trained, namely,

GAT, RGCN and MPNN. Each of these networks is trained in all the different functions,

one at a time. The hyperparameter tuning method has been a random search, training

a random GNN variant to predict a random function with random hyperparameters each

time. A total of 156 models have been trained. Plots in Figure B.3 shows the models trained

by function (B.3a) and by GNN variant (B.3b).
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(a) (b)

Figure B.3: Number of models trained by function (a) and by GNN model (b)

B.3 Results and Discussion

In this section, we can see the results of the losses with models with a different number

of layers (see Figure B.4). As expected, there are no significant gains when making the

network deeper.

Figure B.4: Best losses per number of layers of the model for function 6. The results consider all the
different GNN variants (average)

In Figure B.5, we can see the visual results of the best models for each of the functions.

As you can see, the hard edges in all the functions are approximated correctly, and there

is no sign of over-smoothing. In the results for function 4, we can see that the GNN can

approximate soft and hard edges at the same time. It also captures the non-isotropies as

shown in functions 2, 3 and 4 where the triangles are clearly recognisable.

In conclusion, this small study proves that the GNN variants used in this thesis are
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(a) Function 1 (b) Function 2 (c) Function 3

(d) Function 4 (e) Function 5 (f) Function 6

Figure B.5: Examples of graphs

expressive enough for solving the problems posed in Chapters 4 and 5. Besides, we can see

that a few layers are enough in all cases and that deep does not help the overall network

performance.
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Appendix C

Calibration Process of the Cameras

The calibration of cameras in the laboratory is detailed in this appendix. The process

determines the intrinsic parameters of all available cameras and the extrinsic parameters

relative to the desired world frame of reference. For each camera a, the calibration matrices

Ta, which transform world coordinates into camera coordinates, adhere to the form of

Equation C.1.

Ta =




−fa,x 0 ca,x

0 −fa,y ca,y

0 0 1




(
Ra,3×3 ta,3×1

)
(C.1)

Here, fa,x and fa,y are the horizontal and vertical focal lengths of camera a, while ca,x

and ca,y are the pixel coordinates of the image centre. The rotation matrix and translation

vector from the world to the camera frame of reference are Ra,3×3 and ta,3×1, respectively.

The intrinsic parameters are represented by the first matrix in Equation C.1, and the second

matrix corresponds to the extrinsics.

This appendix is divided into two sections. Section C.1 outlines how the transformation

matrix is calculated for each of the cameras from a common frame of reference, while Section

C.2 illustrates how to manually calculate the intrinsics and presents a comparison with the

intrinsics provided by the cameras’ manufacturer’s API.
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C.1 Calculation of the Transformation Matrices.

To calibrate the extrinsics of all the cameras in the room using the same frame of reference,

an AprilTag, similar to the one displayed in Figure C.1a, is employed. The AprilTag is

placed on the room floor where it is visible from all the wall-mounted cameras, as shown

in Figure C.1b. The intrinsic parameters, including focal lengths and centre points, can be

calculated via a call to the API of each camera.

(a) (b)

Figure C.1: The variant of AprilTag used for the extrinsic calibrations of the cameras with the direction
of the axis (Fig. C.1a) and its placement on the floor of the room (Fig. C.1b).

Once the cameras are fixed and the AprilTag is positioned, taking into account the

desired direction of the frame of reference axis, a script is executed on each camera simulta-

neously. This script transmits the captured images and intrinsic parameters of each camera

over the network. A central computer receives these images and intrinsic parameters and

uses a third-party library1 to calculate the extrinsics for each camera.

The extrinsics are integrated with the intrinsics to produce the final transformation

matrices following the form of Equation C.1. These matrices are stored in a pickle file for

future usage.

To verify the accuracy of the calibration script, a small experiment is conducted that

involves calculating the distance from each camera to the centre of the AprilTag using

the transformation matrices. For each camera a, the vector (0, 0, 0, 1) is multiplied by its

1The library used to obtain the extrinsic using AprilTags is called dt-apriltags and the code is available
at: https://github.com/duckietown/lib-dt-apriltags
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respective transformation matrix Ta, which yields the homogeneous 3D coordinates of the

camera’s position with respect to the world frame of reference, p⃗a. This calculation is

represented in the following equation:

p⃗a = Ta × (0, 0, 0, 1) (C.2)

With the position p⃗a of each camera determined, the Euclidean distance to the AprilTag

can be calculated. Once these distances are computed, a laser meter is used to manually

measure the distance from the AprilTag to each camera. Table C.1 shows the results for both

types of measurements. As can be observed, the distances are nearly identical, confirming

the precision of the calibration process.

Cameras
Distances to the origin (meters)
Manual Calibration

A 4.660 4.650
B 5.824 5.736
C 4.553 4.496
D 5.840 5.820

Table C.1: Results of the manual testing of the calibration.

C.2 Manual Calculation of the Intrinsics Parameters and

Comparative with the Values Provided by the API of

the Cameras.

As mentioned in the previous section, the intrinsic parameters of each camera can be easily

obtained from their respective APIs. This section outlines how these parameters can be

manually calculated and provides a comparison with the manufacturer-provided parameters

to evaluate their precision.

For the calculation of the intrinsic parameters, a checkerboard pattern, such as the one

shown in Figure C.2a, is used. For each camera, a script that utilizes the OpenCV library

is run to determine the intrinsic parameters of the camera when the checkerboard pattern

is presented, as shown in Figure C.2b. Specifically, the functions used for the calibration

are findChessboardCorners() to locate the checkerboard and calibrateCamera() to obtain
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the intrinsic parameters. Additional information about these functions can be found at

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html.

(a) (b)

Figure C.2: Checkerboard pattern used for the intrinsic calibration of the cameras (Fig. C.2a) and the
output during the calibration process by OpenCV (Fig. C.2b).

The results of the manual intrinsic calibration for each camera are presented in Table

C.2, while the values provided by the cameras’ APIs are displayed in Table C.3. Both

calibrations use a resolution of 848 × 480. As can be observed, the values from both tables

are very similar, which corroborates the accuracy of the factory parameters of the cameras.

Cameras fx fy Cx Cy

tracker a 423.475 423.884 420.693 237.982
tracker b 416.305 416.983 424.746 237.451
tracker c 423.386 424.121 424.189 246.160
tracker d 425.946 426.205 423.792 241.345

Table C.2: Manual calibration results for resolution 848x480

Cameras fx fy Cx Cy

tracker a 420.736 420.424 418.543 236.891
tracker b 420.839 420.434 421.197 239.158
tracker c 422.513 422.243 422.971 246.832
tracker d 422.103 421.955 422.904 241.955

Table C.3: Factory calibration values for resolution 848x480
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